Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 50(35): 7546-56, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21770429

RESUMEN

Human interleukin-5 receptor α (IL5Rα) is a glycoprotein that contains four N-glycosylation sites in the extracellular region. Previously, we found that enzymatic deglycosylation of IL5Rα resulted in complete loss of IL5 binding. To localize the functionally important carbohydrate moieties, we employed site-directed mutagenesis at the N-glycosylation sites (Asn(15), Asn(111), Asn(196), and Asn(224)). Because Asn-to-Gln mutagenesis caused a significant loss of structural integrity, we used diverse mutations to identify stability-preserving changes. We also rationally designed mutations at and around the N-glycosylation sites based on sequence alignment with mouse IL5Rα and other cytokine receptors. These approaches were most successful at Asn(15), Asn(111), and Asn(224). In contrast, any replacement at Asn(196) severely reduced stability, with the N196T mutant having a reduced binding affinity for IL5 and diminished biological activity because of the lack of cell surface expression. Lectin inhibition analysis suggested that the carbohydrate at Asn(196) is unlikely involved in direct ligand binding. Taking this into account, we constructed a stable variant, with triple mutational deglycosylation (N15D, I109V/V110T/N111D, and L223R/N224Q). The re-engineered protein retained Asn(196) while the other three glycosylation sites were eliminated. This mostly deglycosylated variant had the same ligand binding affinity and biological activity as fully glycosylated IL5Rα, thus demonstrating a unique role for Asn(196) glycosylation in IL5Rα function. The results suggest that unique carbohydrate groups in multiglycosylated receptors can be utilized asymmetrically for function.


Asunto(s)
Asparagina/química , Asparagina/genética , Subunidad alfa del Receptor de Interleucina-5/química , Subunidad alfa del Receptor de Interleucina-5/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Asparagina/fisiología , Conformación de Carbohidratos , Línea Celular , Drosophila melanogaster , Variación Genética , Glicosilación , Humanos , Subunidad alfa del Receptor de Interleucina-5/fisiología , Ligandos , Ratones , Datos de Secuencia Molecular , Unión Proteica/genética
2.
Blood ; 116(8): 1321-8, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20410507

RESUMEN

Trib1, Trib2, and Trib3 are mammalian homologs of Tribbles, an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice, whereas Trib3 has not been associated with leukemia. Given the high degree of structural conservation among Tribbles family members, we directly compared the 3 mammalian Tribbles in hematopoietic cells by reconstituting mice with hematopoietic stem cells retrovirally expressing these proteins. All mice receiving Trib1 or Trib2 transduced hematopoietic stem cells developed acute myeloid leukemia, whereas Trib3 mice did not. Our previous data indicated that Trib2-mediated degradation of the transcription factor, CCAAT/enhancer-binding protein-alpha (C/EBPalpha), is important for leukemogenesis. Similar to Trib2, Trib1 induced C/EBPalpha degradation and inhibited its function. In contrast, Trib3 failed to inactivate or promote efficient degradation of C/EBPalpha. These data reveal that the 3 Tribbles homologs differ in their ability to promote degradation of C/EBPalpha, which account for their differential ability to induce leukemia.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia Mieloide Aguda/etiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Trasplante de Médula Ósea , Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
J Biol Chem ; 283(19): 13398-406, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18326494

RESUMEN

Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas/química , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Subunidad alfa del Receptor de Interleucina-5/química , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Línea Celular , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Humanos , Interleucina-5/metabolismo , Modelos Moleculares , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Transgenes
4.
Cytokine ; 42(2): 179-190, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18294864

RESUMEN

Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Interleucina-5/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Interleucina-5/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Drosophila , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-5/metabolismo
5.
J Immunol ; 173(12): 7230-8, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15585845

RESUMEN

Neuromedin U (NmU), originally isolated from porcine spinal cord and later from other species, is a novel peptide that potently contracts smooth muscle. NmU interacts with two G protein-coupled receptors designated as NmU-1R and NmU-2R. This study demonstrates a potential proinflammatory role for NmU. In a mouse Th2 cell line (D10.G4.1), a single class of high affinity saturable binding sites for (125)I-labeled NmU (K(D) 364 pM and B(max) 1114 fmol/mg protein) was identified, and mRNA encoding NmU-1R, but not NmU-2R, was present. Competition binding analysis revealed equipotent, high affinity binding of NmU isopeptides to membranes prepared from D10.G4.1 cells. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular Ca(2+) concentration (EC(50) 4.8 nM for human NmU). In addition, NmU also significantly increased the synthesis and release of cytokines including IL-4, IL-5, IL-6, IL-10, and IL-13. Studies using pharmacological inhibitors indicated that maximal NmU-evoked cytokine release required functional phospholipase C, calcineurin, MEK, and PI3K pathways. These data suggest a role for NmU in inflammation by stimulating cytokine production by T cells.


Asunto(s)
Citocinas/metabolismo , Proteínas de la Membrana/fisiología , Neuropéptidos/fisiología , Receptores de Neurotransmisores/fisiología , Células Th2/inmunología , Células Th2/metabolismo , Animales , Calcineurina/fisiología , Calcio/metabolismo , Línea Celular , Células Clonales , Citocinas/antagonistas & inhibidores , Perros , Estrenos/farmacología , Humanos , Interleucinas/antagonistas & inhibidores , Interleucinas/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Pirrolidinonas/farmacología , Ratas , Receptores de Interleucina-4/fisiología , Receptores de Neurotransmisores/biosíntesis , Receptores de Neurotransmisores/genética , Transducción de Señal/inmunología , Porcinos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...