Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809980

RESUMEN

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Asunto(s)
Receptor Cannabinoide CB1 , Transducción de Señal , Sinapsis , Transmisión Sináptica , Animales , Transmisión Sináptica/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Sinapsis/metabolismo , Terminales Presinápticos/metabolismo , Ratones , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Dronabinol/farmacología
2.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37902728

RESUMEN

In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.


Asunto(s)
Actomiosina , Axones , Glucólisis , Citoesqueleto de Actina , Actomiosina/metabolismo , Adenosina Trifosfato , Axones/fisiología
3.
Mol Psychiatry ; 27(3): 1805-1815, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165396

RESUMEN

Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cuerpo Estriado , Proteínas del Tejido Nervioso , Corteza Prefrontal , Inhibición Prepulso , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/fisiología
4.
Front Cell Neurosci ; 14: 180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754013

RESUMEN

By limiting protein exchange between the soma and the axon, the axon initial segment (AIS) enables the segregation of specific proteins and hence the differentiation of the somatodendritic compartment and the axonal compartment. Electron microscopy and super-resolution fluorescence imaging have provided important insights in the ultrastructure of the AIS. Yet, the full extent of its filtering properties is not fully delineated. In particular, it is unclear whether and how the AIS opposes the free exchange of soluble proteins. Here we describe a robust framework to combine whole-cell photobleaching and retrospective high-resolution imaging in developing neurons. With this assay, we found that cytoplasmic soluble proteins that are not excluded from the axon upon expression over tens of hours exhibit a strong mobility reduction at the AIS - i.e., are indeed compartmentalized - when monitored over tens of minutes. This form of compartmentalization is developmentally regulated, requires intact F-actin and may be correlated with the composition and ultrastructure of the submembranous spectrin cytoskeleton. Using computational modeling, we provide evidence that both neuronal morphology and the AIS regulate this compartmentalization but act on distinct time scales, with the AIS having a more pronounced effect on fast exchanges. Our results thus suggest that the rate of protein accumulation in the soma may impact to what extent and over which timescales freely moving molecules can be segregated from the axon. This in turn has important implications for our understanding of compartment-specific signaling in neurons.

5.
Small ; 15(47): e1902796, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31583817

RESUMEN

Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity.


Asunto(s)
Membrana Celular/química , Imagenología Tridimensional , Nanopartículas/química , Nanotecnología/métodos , Animales , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Puntos Cuánticos
6.
Nat Commun ; 9(1): 4272, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323233

RESUMEN

Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington's disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD. We demonstrate that defects in the brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway contribute to the deregulated AMPAR trafficking by reducing the interaction between transmembrane AMPA receptor regulatory proteins (TARPs) and the PDZ-domain scaffold protein PSD95. The disturbed AMPAR surface diffusion is rescued by the antidepressant drug tianeptine via the BDNF signaling pathway. Tianeptine also restores the impaired LTP and hippocampus-dependent memory in different HD mouse models. These findings unravel a mechanism underlying hippocampal synaptic and memory dysfunction in HD, and highlight AMPAR surface diffusion as a promising therapeutic target.


Asunto(s)
Hipocampo/fisiopatología , Enfermedad de Huntington/fisiopatología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Difusión , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tiazepinas/farmacología
7.
F1000Res ; 6: 724, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28663786

RESUMEN

Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.

8.
Nat Commun ; 7: 13233, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775035

RESUMEN

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético , Glucólisis , Neuronas/metabolismo , Vesículas Transportadoras/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Neuronas/citología , Proteoma/metabolismo , Proteómica/métodos , Ratas
9.
ACS Nano ; 9(11): 11479-89, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26505527

RESUMEN

Long-term inspection of biological phenomena requires probes of elevated intra- and extracellular stability and target biospecificity. The high fluorescence and photostability of quantum dot (QD) nanoparticles contributed to foster their promise as bioimaging tools that could overcome limitations associated with traditional fluorophores. However, QDs' potential as a bioimaging platform relies upon a precise control over the surface chemistry modifications of these nano-objects. Here, a zwitterion-vinylimidazole block copolymer ligand was synthesized, which regroups all anchoring groups in one compact terminal block, while the rest of the chain is endowed with antifouling and bioconjugation moieties. By further application of an oriented bioconjugation approach with whole IgG antibodies, QD nanobioconjugates were obtained that display outstanding intra- and extracellular stability as well as biorecognition capacity. Imaging the internalization and intracellular dynamics of a transmembrane cell receptor, the CB1 brain cannabinoid receptor, both in HEK293 cells and in neurons, illustrates the breadth of potential applications of these nanoprobes.


Asunto(s)
Betaína/análogos & derivados , Diagnóstico por Imagen/métodos , Imidazoles/química , Polímeros/química , Puntos Cuánticos/química , Betaína/síntesis química , Betaína/química , Coloides , Fluoresceína/química , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Imidazoles/síntesis química , Cinética , Polimerizacion , Polímeros/síntesis química , Receptor Cannabinoide CB1/metabolismo , Propiedades de Superficie
10.
PLoS One ; 9(6): e99341, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926995

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform. Most of these shRNAs silenced, efficiently and selectively, mutant HTT in vitro. Lentiviral-mediated infection with the shRNAs led to selective degradation of mutant HTT mRNA and prevented the apparition of neuropathology in HD rat's striatum expressing mutant HTT containing the various SNPs. In transgenic BACHD mice, the mutant HTT allele was also silenced by this approach, further demonstrating the potential for allele-specific silencing. Finally, the allele-specific silencing of mutant HTT in human embryonic stem cells was accompanied by functional recovery of the vesicular transport of BDNF along microtubules. These findings provide evidence of the therapeutic potential of allele-specific RNA interference for HD.


Asunto(s)
Encéfalo/citología , Terapia Genética/métodos , Enfermedad de Huntington/terapia , Proteínas Mutantes/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/genética , Animales , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Técnicas In Vitro , Masculino , Ratones , Proteínas Mutantes/genética , Polimorfismo de Nucleótido Simple , Isoformas de ARN/metabolismo , Estabilidad del ARN , Ratas , Ratas Wistar
11.
Trends Cell Biol ; 23(12): 634-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24091156

RESUMEN

Emerging evidence suggests that the dysregulation of fast axonal transport (FAT) plays a crucial role in several neurodegenerative disorders. Some of these diseases are caused by mutations affecting the molecular motors or adaptors that mediate FAT, and transport defects in organelles such as mitochondria and vesicles are observed in most, if not all neurodegenerative disorders. The relationship between neurodegenerative disorders and FAT is probably due to the extreme polarization of neurons, which extend long processes such as axons and dendrites. These characteristics render neurons particularly sensitive to transport alterations. Here we review the impact of such alterations on neuronal survival. We also discuss various strategies that might restore FAT, potentially slowing disease progression.


Asunto(s)
Transporte Axonal , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Metabolismo Energético , Humanos , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/genética , Mutación/genética
12.
PLoS One ; 8(3): e60162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555909

RESUMEN

Huntington's disease (HD) is a devastating dominantly inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the N-terminal part of the huntingtin (HTT) protein. HTT is a large scaffold protein that interacts with more than a hundred proteins and is probably involved in several cellular functions. The mutation is dominant, and is thought to confer new and toxic functions to the protein. However, there is emerging evidence that the mutation also alters HTT's normal functions. Therefore, HD models need to recapitulate this duality if they are to be relevant. Drosophila melanogaster is a useful in vivo model, widely used to study HD through the overexpression of full-length or N-terminal fragments of mutant human HTT. However, it is unclear whether Drosophila huntingtin (DmHTT) shares functions similar to the mammalian HTT. Here, we used various complementary approaches to analyze the function of DmHTT in fast axonal transport. We show that DmHTT interacts with the molecular motor dynein, associates with vesicles and co-sediments with microtubules. DmHTT co-localizes with Brain-derived neurotrophic factor (BDNF)-containing vesicles in rat cortical neurons and partially replaces mammalian HTT in a fast axonal transport assay. DmHTT-KO flies show a reduced fast axonal transport of synaptotagmin vesicles in motoneurons in vivo. These results suggest that the function of HTT in axonal transport is conserved between flies and mammals. Our study therefore validates Drosophila melanogaster as a model to study HTT function, and its dysfunction associated with HD.


Asunto(s)
Transporte Axonal/fisiología , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Proteínas de Drosophila , Dineínas/metabolismo , Humanos , Proteína Huntingtina , Inmunoprecipitación , Microtúbulos/metabolismo , Neuronas/metabolismo , Unión Proteica , Ratas
13.
J Neurosci ; 33(15): 6298-309, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575829

RESUMEN

Huntingtin (HTT), the protein mutated in Huntington's disease (HD), controls transport of the neurotrophin, brain-derived neurotrophic factor (BDNF), within corticostriatal neurons. Transport and delivery of BDNF to the striatum are reduced in disease, which contributes to striatal neuron degeneration. BDNF released by cortical neurons activates TrkB receptors at striatal dendrites to promote striatum survival. However, it remains to be determined whether transport of TrkB, the BDNF receptor, depends on HTT and whether such transport is altered in mutant situation. Here we show that TrkB binds to and colocalizes with HTT and dynein. Silencing HTT reduces vesicular transport of TrkB in striatal neurons. In HD, the polyQ expansion in HTT alters the binding of TrkB-containing vesicles to microtubules and reduces transport. Using a combination of microfluidic devices that isolate dendrites from cell bodies and BDNF coupled to quantum dots, we selectively analyzed TrkB retrograde transport in response to BDNF stimulation at dendrite terminals. We show that the retrograde transport of TrkB vesicles within striatal dendrites and the BDNF/TrkB-induced signaling through ERK phosphorylation and c-fos induction are decreased in neurons from an HD mouse model. Together, our findings demonstrate that HTT is a crucial regulator of TrkB trafficking. Transport defects in HD are not restricted to BDNF transport in cortical neurons but also affect trafficking of its ligand-bound receptor in the striatal neurons. This transport alteration may further impair BDNF-TrkB survival signaling within the corticostriatal connection that is most affected in HD.


Asunto(s)
Cuerpo Estriado/metabolismo , Dendritas/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Receptor trkB/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Línea Celular , Modelos Animales de Enfermedad , Dineínas/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/genética , Ratones , Microtúbulos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Transporte de Proteínas , Ratas , Transducción de Señal/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
14.
Cell ; 152(3): 479-91, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374344

RESUMEN

Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular motors that transport vesicles. We demonstrate that glycolysis provides ATP for the FAT of vesicles. Although inhibiting ATP production from mitochondria did not affect vesicles motility, pharmacological or genetic inhibition of the glycolytic enzyme GAPDH reduced transport in cultured neurons and in Drosophila larvae. GAPDH localizes on vesicles via a huntingtin-dependent mechanism and is transported on fast-moving vesicles within axons. Purified motile vesicles showed GAPDH enzymatic activity and produced ATP. Finally, we show that vesicular GAPDH is necessary and sufficient to provide on-board energy for fast vesicular transport. Although detaching GAPDH from vesicles reduced transport, targeting GAPDH to vesicles was sufficient to promote FAT in GAPDH deficient neurons. This specifically localized glycolytic machinery may supply constant energy, independent of mitochondria, for the processive movement of vesicles over long distances in axons.


Asunto(s)
Transporte Axonal , Drosophila melanogaster/metabolismo , Glucólisis , Neuronas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Encéfalo/citología , Células Cultivadas , Drosophila melanogaster/crecimiento & desarrollo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ratones , Mitocondrias/metabolismo , Ratas
16.
Neurobiol Dis ; 45(2): 786-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22127389

RESUMEN

Mecp2 deficiency or overexpression causes a wide spectrum of neurological diseases in humans among which Rett Syndrome is the prototype. Pathogenic mechanisms are thought to involve transcriptional deregulation of target genes such as Bdnf together with defects in the general transcriptional program of affected cells. Here we found that two master genes, Huntingtin (Htt) and huntingtin-associated protein (Hap1), involved in the control of Bdnf axonal transport, are altered in the brain of Mecp2-deficient mice. We also revealed an in vivo defect of Bdnf transport throughout the cortico striatal pathway of Mecp2-deficient animals. We found that the velocity of Bdnf-containing vesicles is reduced in vitro in the Mecp2-deficient axons and this deficit can be rescued by the re-expression of Mecp2. The defect in axonal transport is not restricted to Bdnf since transport of the amyloid precursor protein (App) that is Htt and Hap1-dependent is also altered. Finally, treating Mecp2-deficient mice with cysteamine, a molecule increasing the secretion of Bdnf vesicles, improved the lifespan and reduced motor defects, suggesting a new therapeutic strategy for Rett syndrome.


Asunto(s)
Transporte Axonal/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Proteína Huntingtina , Inmunohistoquímica , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Transfección
17.
Neuron ; 67(3): 392-406, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20696378

RESUMEN

Huntingtin is the protein mutated in Huntington's disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.


Asunto(s)
Proteínas Asociadas a Microtúbulos/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Huso Acromático/fisiología , Animales , Aumento de la Célula , Células Cultivadas , Proteínas de Drosophila , Drosophila melanogaster , Células HeLa , Humanos , Proteína Huntingtina , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Microtúbulos/fisiología
18.
Mol Brain ; 2: 33, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19860865

RESUMEN

BACKGROUND: Huntington's disease (HD) is an inherited neurogenerative disease caused by an abnormal expansion of glutamine repeats in the huntingtin protein. There is currently no treatment to prevent the neurodegeneration caused by this devastating disorder. Huntingtin has been shown to be a positive regulator of vesicular transport, particularly for neurotrophins such as brain-derived neurotrophic factor (BDNF). This function is lost in patients with HD, resulting in a decrease in neurotrophic support and subsequent neuronal death. One promising line of treatment is therefore the restoration of huntingtin function in BDNF transport. RESULTS: The phosphorylation of huntingtin at serine 421 (S421) restores its function in axonal transport. We therefore investigated whether inhibition of calcineurin, the bona fide huntingtin S421 phosphatase, restored the transport defects observed in HD. We found that pharmacological inhibition of calcineurin by FK506 led to sustained phosphorylation of mutant huntingtin at S421. FK506 restored BDNF transport in two complementary models: rat primary neuronal cultures expressing mutant huntingtin and mouse cortical neurons from Hdh(Q111/Q111) HD knock-in mice. This effect was the result of specific calcineurin inhibition, as calcineurin silencing restored both anterograde and retrograde transport in neurons from Hdh(Q111/Q111) mice. We also observed a specific increase in calcineurin activity in the brain of Hdh(Q111/Q111) mice potentially accounting for the selective loss of huntingtin phosphorylation and contributing to neuronal cell death in HD. CONCLUSION: Our results validate calcineurin as a target for the treatment of HD and provide the first demonstration of the restoration of huntingtin function by an FDA-approved compound.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inhibidores de la Calcineurina , Calcineurina/genética , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Tacrolimus/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Calcineurina/metabolismo , Corteza Cerebral/patología , Proteína Huntingtina , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Interferencia de ARN/efectos de los fármacos , Ratas
19.
Hum Mol Genet ; 17(24): 3837-46, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18772195

RESUMEN

Huntingtin (htt), the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport whose function is lost in disease. Here, we demonstrate that phosphorylation of htt at serine 421 (S421) restores its function in axonal transport. Using a strategy involving RNA (ribonucleic acid) interference and re-expression of various constructs, we show that polyQ (polyglutamine)-htt is unable to promote transport of brain-derived neurotrophic factor (BDNF)-containing vesicles, but polyQ-htt constitutively phosphorylated at S421 is as effective as the wild-type (wt) as concerns transport of these vesicles. The S421 phosphorylated polyQ-htt displays the wt function of inducing BDNF release. Phosphorylation restores the interaction between htt and the p150(Glued) subunit of dynactin and their association with microtubules in vitro and in cells. We also show that the IGF-1 (insulin growth factor type I)/Akt pathway by promoting htt phosphorylation compensates for the transport defect. This is the first description of a mechanism that restores the htt function altered in disease.


Asunto(s)
Transporte Axonal/genética , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Serina/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Línea Celular , Células Cultivadas , Vectores Genéticos/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Neuronas/fisiología , Péptidos/metabolismo , Fosforilación , Transporte de Proteínas/genética , Ratas
20.
J Neurosci ; 28(39): 9723-31, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18815258

RESUMEN

Gene expression changes are a hallmark of the neuropathology of Huntington's disease (HD), but the exact molecular mechanisms of this effect remain uncertain. Here, we report that in vitro models of disease comprised of primary striatal neurons expressing N-terminal fragments of mutant huntingtin (via lentiviral gene delivery) faithfully reproduce the gene expression changes seen in human HD. Neither viral infection nor unrelated (enhanced green fluorescent protein) transgene expression had a major effect on resultant RNA profiles. Expression of a wild-type fragment of huntingtin [htt171-18Q] also caused only a small number of RNA changes. The disease-related signal in htt171-82Q versus htt171-18Q comparisons was far greater, resulting in the differential detection of 20% of all mRNA probe sets. Transcriptomic effects of mutated htt171 are time- and polyglutamine-length dependent and occur in parallel with other manifestations of polyglutamine toxicity over 4-8 weeks. Specific RNA changes in htt171-82Q-expressing striatal cells accurately recapitulated those observed in human HD caudate and included decreases in PENK (proenkephalin), RGS4 (regulator of G-protein signaling 4), dopamine D(1) receptor (DRD1), DRD2, CNR1 (cannabinoid CB(1) receptor), and DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32; also known as PPP1R1B) mRNAs. HD-related transcriptomic changes were also observed in primary neurons expressing a longer fragment of mutant huntingtin (htt853-82Q). The gene expression changes observed in cultured striatal neurons are not secondary to abnormalities of neuronal firing or glutamatergic, dopaminergic, or brain-derived neurotrophic factor signaling, thereby demonstrating that HD-induced dysregulation of the striatal transcriptome might be attributed to intrinsic effects of mutant huntingtin.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Enfermedad de Huntington/genética , Neuronas/fisiología , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Encefalinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lentivirus/fisiología , Análisis por Micromatrices , Mutación , Neuronas/efectos de los fármacos , Péptidos/farmacología , Fosfoproteínas/metabolismo , Precursores de Proteínas/metabolismo , Proteínas RGS/metabolismo , Ratas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...