Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172215, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580117

RESUMEN

Water pollution has become a critical global concern requiring effective monitoring techniques and robust protection strategies. Contaminants of emerging concern (CECs) are increasingly detected in various water sources, with their harmful effects on humans and ecosystems continually evolving. Based on literature reports highlighting the promising sorption properties of metal-organic frameworks (MOFs), the aim of this study was to evaluate the suitability of NH2-MIL-125 (Ti) and UiO-66 (Ce) as sorbents in passive sampling devices (MOFs-PSDs) for the collection and extraction of a wide group of CECs. Solvothermal methods were used to synthesize MOFs, and the characterization of the obtained materials was performed using field-emission scanning electron microscopy (FE-SEM), powder X-ray diffractometry (pXRD) and Fourier-transform infrared (FTIR) spectroscopy. The research demonstrated the sorption capabilities of the tested MOFs, the ease and rapidity of their chemical regeneration and the possibility of reuse as sorbents. Using chemometric analysis, the structural properties of CECs determining the sorption efficiency on the surface of NH2-MIL-125 (Ti) were identified. The MOFs-PSDs were lab-calibrated to examine the kinetics of analytes sorption and determine the sampling rates (Rs). MOFs-PSDs and CNTs-PSDs (PSDs containing carbon nanotubes as a sorbent) were then placed in the Elblag River and the Vistula Lagoon to sampling and extraction of the target compounds from the water. CNTs-PSDs were selected, based on our previous research, for the comparison of the effectiveness of the MOFs-PSDs in environmental monitoring. MOFs-PSDs were successfully used in monitoring of CECs in water. The time-weighted average concentrations (CTWA) of 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determined in the Elblag River and CTWA of metoprolol, diclofenac, 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determine in the Vistula Lagoon using MOFs-PSDs and a high-performance liquid chromatography coupled with triple quadrupole mass spectrometer.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38470740

RESUMEN

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

3.
Food Chem ; 440: 138246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154286

RESUMEN

Microplastics (MPs) are plastic particles between 0.1 and 5,000 µm in size that can contaminate food. Unfortunately, to date, little attention has been paid to analyzing the presence of such particles in baby foods. The present study aimed to determine the degree of contamination of infant formula with MPs. A total of thirty products were subjected to analysis. The research methodology used included the isolation of plastic particles, identification and characterization of MPs using advanced microscopic and spectroscopic techniques. Microplastics were detected in all tested samples. The most frequently identified polymers were polyamide, polyethylene, polypropylene, and poly(ethylene terephthalate). The particles exhibited diverse forms, including fibers, fragments, and films, displaying a range of colors such as colorless, black, and brown particles. Furthermore, the daily intake of MPs by children fed exclusively infant formula was estimated to be approximately 49 ± 32 MPs. This poses a potential health risk for the youngest.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Niño , Humanos , Microplásticos/análisis , Plásticos , Fórmulas Infantiles/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
J Colloid Interface Sci ; 640: 578-587, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878075

RESUMEN

ZnIn2S4 (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnIn2S4 (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally pre-prepared wide-band-gap BiOCl microplates using simple oil-bath method to be used for the first time for photocatalytic glycerol reforming for photocatalytic hydrogen evolution (PHE) under visible light irradiation (λ > 420 nm). The optimum amount of BiOCl microplates in the composite was found 4 wt% (4% BiOCl@ZIS) in the presence of in-situ 1 wt% Pt deposition. Then, the in-situ Pt photodeposition optimization studies over 4% BiOCl@ZIS composite showed the highest PHE rate of 674 µmol g-1h-1 with the ultra-low platinum amount (0.0625 wt%). The possible mechanisms behind this improvement can be ascribed to the formation of Bi2S3 low-band-gap semiconductor during BiOCl@ZIS composite synthesis resulting in Z-scheme charge transfer mechanism between ZIS and Bi2S3 upon visible light irradiation. This work expresses not only the photocatalytic glycerol reforming over ZIS photocatalyst but also a solid proof of the contribution of wide-band-gap BiOCl photocatalysts to enhancement of ZIS PHE performance under visible light.

5.
Adv Colloid Interface Sci ; 314: 102864, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37001207

RESUMEN

Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs. We identified main mechanisms of MOFs' growth leading to different morphology of final particles and next systematically discuss the effect of miscellaneous parameters on MOFs morphology based on the main mechanisms related to the nucleation, growth and formation of final MOFs structure, including coordination modulation, protonation/deprotonation acting and modulation by surfactants or capping agents. The effect of microwaves and ultrasound employment during synthesis is also considered due to their affecting especially nucleation and particles growing steps during MOFs formation.

6.
Food Chem ; 418: 135985, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36989641

RESUMEN

The ubiquity of microplastics (MPs) is a more and more frequently brought up topic. The fact that such particles are present in food raises particular concern. Information regarding the described contamination is incoherent and difficult to interpret. Problems appear already at the level of the definition of MPs. This paper will discuss ways of explaining the concept of MPs and methods used for its analysis. Isolation of characterised particles is usually performed using filtration, etching and/or density separation. Spectroscopic techniques are commonly applied for analysis, whereas visual evaluation of the particles is possible thanks to microscopic analysis. Basic information about the sample can be obtained by the combination of Fourier Transform Infrared spectroscopy or Raman spectroscopy and microscopy or using the thermal method combined with spectroscopy or chromatography. The unification of the research methodology will allow a credible assessment of the influence of this pollution coming from food on health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Microplásticos/análisis , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Alimentos
7.
Sci Total Environ ; 837: 155776, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537515

RESUMEN

The water scarcity, the presence of different contaminants in the worldwide waters and wastewaters and their impacts should motivate their good elimination and water management. With this, photocatalysis and photocatalytic ozonation are strong solutions to obtain good quality reclaimed water, for different applications. Nanostructured supported photo-active catalysts, such as the TiO2, WO3 or ZnO can positively affect the performance of such technologies. Therefore, different semiconductors materials have been aroused the interest of the scientific community, mainly due to its functional properties as well as characteristics imposed by the different nanostructures. With this, this work overviews different works and perspective on the TiO2 nanotubes and other semiconductors nanostructures, with the analysis of different works from 2001 to 2022. Aspects as the substrate effect, electrolyte nature, aspect ratio, electrolyte aging, and annealing treatment but also the effect of morphology, anodization time, applied voltage, temperature and viscosity are discussed. Modification of TiO2 nanotubes is also presented in this paper. The main objective of this work is to present and discuss the key parameters and their effects on the anodization of different semiconductors, as well as the results obtained until today on the degradation of different contaminants by photocatalysis and photocatalytic ozonation, as well as their use on the treatment of real wastewater. TiO2 nanotubes present unique properties and highly ordered configuration, which motivate their use on photo-driven technologies for the pollutant's abatement, even when compared to other nanostructures. However, photocatalysts with activity on the visible range and solar radiation, such as the WO3, can present higher performance and can decrease operational costs, and must be an important source and a key to find efficient and cost-friendly solutions.


Asunto(s)
Nanoestructuras , Ozono , Catálisis , Nanoestructuras/química , Ozono/química , Titanio/química , Aguas Residuales/química , Agua
8.
Dalton Trans ; 51(15): 5962-5976, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35348154

RESUMEN

In recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO2 sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO2. The highest efficiency of photoelectrocatalytic degradation of anticancer drugs (ifosfamide, 5-fluorouracil, imatinib) was achieved for the SnS-Ti/TiO2 photoelectrode with a SnS quantum dot size from 4 to 10 nm. In addition, a decrease of IF PEC degradation efficiency was observed with increasing pH and with the presence of Cl-, NO3-, HCO3- and organic matter in the treated solution. Studies of the PEC mechanism have shown that drug degradation occurs mainly as a result of the direct and indirect action of photogenerated holes on the SnS-Ti/TiO2 photoelectrode, and the identified degradation products allowed for the presentation of the degradation pathway of IF, 5-FU and IMB. Duckweed (Lemna minor) growth inhibition tests showed no toxicity of the drug solutions after treatment.


Asunto(s)
Antineoplásicos , Nanotubos , Puntos Cuánticos , Antineoplásicos/farmacología , Fluorouracilo/farmacología , Luz Solar , Titanio
9.
Sci Rep ; 12(1): 2151, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140320

RESUMEN

Nowadays, studies are carried out on the design and synthesis of new catalysts for olefin oligomerization and polymerization, which would contain non-toxic metals and at the same time show high catalytic activities. Complex compounds of transition metal ions such as Fe(II), Cr(III) and Zr(II) containing pyridine or quinoline as ligands show at least moderate catalytic activity in ethylene and propylene polymerizations. To investigate the catalytic activity of the complex containing pyridine ligands and quinoline derivatives, here we have synthesized the crystals of new bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) solvate. The synthesized cobalt(II) complex compound was tested in reactions of 2-chloro-2-propen-1-ol and norbornene oligomerizations. Our studies showed that bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) after activation by MMAO-12 catalyzes the formation of oligomers in nitrogen atmosphere, under atmospheric pressure and at room temperature. Bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) possesses moderate catalytic activity in the formation of norbornene oligomers process and low catalytic activity in 2-chloro-2-propen-1-ol oligomerization.

10.
Sci Total Environ ; 824: 153709, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35150686

RESUMEN

Microplastics (MPs) pollution is one of the most important problems of the Earth. They have been found in all the natural environments, including oceans and the atmosphere. In this study, the concentrations of both atmospheric and marine MPs were measured over the Baltic along a research cruise that started in the Gdansk harbour, till the Gotland island, and the way back. A deposition box (based on a combination of active/passive sampling) was used to collect airborne MPs while, marine MPs concentrations were investigated during the cruise using a dedicated net. Ancillary data were obtained using a combination of particle counters (OPC, LAS and CPC), Aethalometer (AE33 Magee Scientific), spectrofluorometer (sea surface samples, Varian Cary Eclipse), and meteorological sensors. Results showed airborne microplastics average concentrations higher in the Gdansk harbour (161 ± 75 m-3) compared to the open Baltic Sea and to the Gotland island (24 ± 9 and 45 ± 20 m-3). These latter values are closer to the ones measured in the sea (79 ± 18 m-3). The MPs composition was investigated using µ-Raman (for the airborne ones) and FTIR (for marine ones); similar results (e.g. polyethylene, polyethylene terephthalates, polyurethane) were found in the two environmental compartments. The concentrations and similar composition in air and sea suggested a linkage between the two compartments. For this purpose, the atmospheric MPs' equivalent aerodynamic diameter was calculated (28 ± 3 µm) first showing the capability of atmospheric MPs to remain suspended in the air. At the same time, the computed turnover times (0.3-90 h; depending on MPs size) limited the transport distance range. The estimated MPs sea emission fluxes (4-18 ∗ 106 µm3 m-2 s-1 range) finally showed the contemporary presence of atmospheric transport together with a continuous emission from the sea surface enabling a grasshopper long-range transport of microplastics across the sea.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Plásticos , Contaminantes Químicos del Agua/análisis
11.
Sci Rep ; 11(1): 15212, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312412

RESUMEN

The contemporary search for new catalysts for olefin oligomerization and polymerization is based on the study of coordinating compounds and/or organometallic compounds as post-metallocene catalysts. However known catalysts are suffered by many flaws, among others unsatisfactory activity, requirement of high pressure or instability at high temperatures. In this paper, we present a new catalyst i.e. the crystalline complex compound possesing high catalytic activity in the oligomerization of olefins, such as 2-chloro-2-propen-1-ol and ethylene under very mild conditions (room temperature, 0.12 bar for ethylene oligomerization, atmospheric pressure for 2-chloro-2-propen-1-ol oligomerization). New material-Cat-CrNP ([nitrilotriacetato-1,10-phenanthroline]chromium(III) tetrahydrate) has been obtained as crystalline form of the nitrilotriacetate complex compound of chromium(III) with 1,10-phenanthroline and characterized in terms of its crystal structure by the XRD method and by multi-analytical investigations towards its physicochemical propeties The yield of catalytic oligomerization over Cat-CrNP reached to 213.92 g · mmol-1 · h-1· bar-1 and 3232 g · mmol-1 · h-1 · bar-1 for the 2-chloro-2-propen-1-ol and ethylene, respectively. Furthemore, the synthesis of Cat-CrNP is cheap, easy to perform and solvents used during preparation are environmentally friendly.

12.
Materials (Basel) ; 13(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932666

RESUMEN

The design of an active, stable and efficient photocatalyst that is able to be used for hydrogen production is of great interest nowadays. Therefore, four methods of AgTaO3 perovskite synthesis, such as hydrothermal, solvothermal, sol-gel and solid state reactions, were proposed in this study to identify the one with the highest hydrogen generation efficiency by the water splitting reaction. The comprehensive results clearly show that the solid state reaction (SSR) led to the obtainment of a sample with an almost seven times higher photocatalytic activity than the other methods. Furthermore, four ionic liquids, all possessing nitrogen in the form of organic cations (two imidazoliums with different anions, ammonium and tetrazolium), were used for the first time to prepare composites consisting of AgTaO3 modified with IL and Pt, simultaneously. The effect of the ionic liquids (ILs) and Pt nanoparticles' presence on the structure, morphology, optical properties, elemental composition and the effectiveness of the hydrogen generation was investigated and discussed. The morphology investigation revealed that the AgTaO3 photocatalysts with the application of [OMIM]-cation based ILs created smaller granules (<500 nm), whereas [TBA] [Cl] and [TPTZ] [Cl] ILs caused the formation of larger particles (up to 2 µm). We found that various ILs used for the synthesis did not improve the photocatalytic activity of the obtained samples in comparison with pristine AgTaO3. It was detected that the compound with the highest ability for hydrogen generation under UV-Vis irradiation was the AgTaO3_0.2% Pt (248.5 µmol∙g-1), having an almost 13 times higher efficiency in comparison with the non-modified pristine sample. It is evidenced that the enhanced photocatalytic activity of modified composites originated mainly from the presence of the platinum particles. The mechanism of photocatalytic H2 production under UV-Vis light irradiation in the presence of an AgTaO3_IL_Pt composite in the water splitting reaction was also proposed.

13.
Materials (Basel) ; 13(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784513

RESUMEN

Taking our current environmental situation in the world into consideration, people should face growing problems of air and water pollution. Heterogeneous photocatalysis is a highly promising tool to improve both air and water quality through decomposition/mineralization of contaminants directly into harmless CO2 and H2O under ambient conditions. In this contribution, we focused on the synthesis of self-assembly WO3 thin films via an electrochemical approach in the aqueous electrolyte containing fluoride ions toward air purification. The effect of preparation conditions such as applied potential (10-50 V), anodization time (15-120 min), concentration of H2SO4 (0.5-1.5 M) and NaF (0.1-1.0 wt.%) on the morphology, photocurrent response, and photocatalytic activity addressed to removal of air pollutant in the presence of as-prepared WO3 samples were thoroughly examined and presented. The results revealed the growth of nanoplatelets and their gradual transformation into flower-like structures. The oxide layers and platelet thickness of the WO3 samples were found to be proportionally related with the synthesis conditions. The photocatalytic ability toward air purification was evaluated by degradation of toluene from air mixture using low-powered LEDs as an irradiation source (λmax = 415 nm). The highest photoactivity was achieved in presence of the sample which possessed a well-ordered, regular shape and repeatable distribution of flower buds (100% of degradation). The results have confirmed that the oxide layer thickness of the anodic WO3 significantly affected the photocatalytic activity, which increased with the increasing thickness of WO3 (to 1.05 µm) and then had a downward trend. The photocurrent response evidenced that the well-organized sample had the highest ability in photocurrent generation under UV-Vis and Vis irradiation. Finally, a possible growth mechanism of WO3 NFs was also discussed.

14.
J Hazard Mater ; 398: 123250, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32768851

RESUMEN

Despite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0 ± 1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on the morphology, optical properties, structure and surface chemistry of the nanocomposites was systematically studied. Photocatalytic tests revealed that the 1%AIS@ZnO NPy sample reported the highest photoactivity for phenol degradation in aqueous phase (92 % after one hour of irradiation, λ > 350 nm) that was 4 and 68 times the reported for bare ZnO NPy and AIS QDs, respectively. Accordingly, the maximum photocatalytic hydrogen evolution, under UV-vis light, for the same sample corresponded to 17 and 21 times the estimated for pristine ZnO NPy and AIS QDs, respectively. Hence, the AIS QDs - ZnO system has been applied in the photocatalytic field for the first time in this work and a synergetic effect was confirmed owing to a strong heterojunction formation between both semiconductors that allows an enhanced charge carrier separation, improving the photocatalytic activity.

15.
Sci Total Environ ; 743: 140831, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679505

RESUMEN

Titanium dioxide can present advantages when coupled with ozonation. Moreover, the catalytic ozonation can be enhanced by radiation. The main disadvantage of this technology is the use of a suspended catalyst entailing a separation step. Thus, catalytic ozonation was analysed using supported TiO2 nanotubes prepared by anodization at different voltages. The effect of different radiation sources on the catalytic ozonation of parabens was tested. The increase on voltage preparation led to plates with higher surface areas from 60 to 280 cm2. However, this did not improve the parabens mixture degradation during UVA photocatalytic ozonation. The use of sunlight radiation allows a significant reduction in terms of time necessary for total parabens degradation from 15 to 10 min. However, the amount of ozone required doubles. Catalytic ozonation presents worst results than single ozonation. This means that molecular ozone is the main responsible for degradation. No dissolved ozone was detected at the experiments with supported nanotubes which could mean that it was adsorbed on the catalysts surface decreasing the degradation rates. The presence of municipal wastewaters as matrix inhibited parabens degradation for both single and catalytic ozonation, mainly due to the trapping ozone effect. In fact, for the TOD of 4.5 mg/L it was just possible to remove about 80% of parabens when MWW compared to 100% when UP was used. Even so, the presence of supported nanotubes during ozonation seems to be required to reduce the toxicity of the resultant treated effluent. In fact, the wastewater luminescence inhibition decreased (from 100 to 43%) and germination index increased (from 7 to 97%) with catalytic ozonation which may enable treated water reuse.

16.
J Colloid Interface Sci ; 572: 396-407, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32272314

RESUMEN

Ionic liquids (ILs) containing distinct nitrogen-bearing organic cations (pyridinium, pyrrolidinium, imidazolium, ammonium, morpholinium) were first used for the preparation of 23 IL-TiO2 types of composites by ionic liquid assisted solvothermal synthesis. These 23 optimal ILs structures (i.e. compounds exhibiting an optimal combination of specific properties, functionality, and safety) for synthesis and experimental validation were selected by computational high-throughput screening from a combinatorically created library containing 836 ILs theoretically designed and characterized candidates. Then, selected IL-TiO2 structures with potential photocatalytic activity were synthesized with the use of solvothermal reaction. Then, the decomposition level, the role of the individual IL cation structure on the morphology, thermal stability, surface and photocatalytic properties of the IL-TiO2 microparticles were determined experimentally. The chemoinformatic analysis of the relationship between the structure of the ionic liquid, its thermal stability under the conditions of synthesis and photocatalytic activity was applied for the first time. The results presented here are the first step in the development of methodology (combined experimental and theoretical) that may simplify the procedure of designing safer and more efficient TiO2-based photocatalyst. The developed computational methodology makes it possible to predict properties of newly synthesized IL-TiO2 materials before synthesis and identifies structural features of ILs that influence the efficiency of IL-TiO2 system. The presented approach reduces the number and cost of necessary experiments, as well as increases the success ratio of efficient TiO2-based photocatalyst design by a selection of optimal IL structures (i.e. ionic liquid characterized by a combination of most promising physicochemical features).

17.
Materials (Basel) ; 13(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244999

RESUMEN

Conversion coatings are one of the primary types of galvanic coatings used to protect steel structures against corrosion. They are created through chemical reactions between the metal surface and the environment of the phosphating. This paper investigates the impact that the addition of new metal cations to the phosphating reaction environment has on the quality of the final coating. So far, standard phosphate coatings have contained only one primary element, such as zinc in the case of zinc coatings, or two elements, such as manganese and iron in the case of manganese coatings. The structural properties have been determined using a scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical tests. New manganese coatings were produced through a reaction between the modified phosphating bath and the metal (Ba, Zn, Cd, Mo, Cu, Ce, Sr, and Ca). This change was noticeable in the structure of the produced manganese phosphate crystallites. A destructive effect of molybdenum and chromium was demonstrated. Microscopic analysis, XRD analysis and electrochemical tests suggest that the addition of new metal cations to the phosphating bath affects the corrosion resistance of the modified coating.

18.
Oxid Med Cell Longev ; 2019: 6740325, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827692

RESUMEN

Implant-related infections are an emerging clinical and economic problem. Therefore, we decided to assess potential clinical usefulness and safety of silver orthophosphate microparticles (SOMPs) regarding their shape. We synthesized and then assessed antimicrobial properties and potential cytotoxicity of six shapes of SOMPs (tetrapod, cubes, spheres, tetrahedrons, branched, and rhombic dodecahedron). We found that SOMPs had a high antimicrobial effect; they were more efficient against fungi than bacteria. SOMPs exerted an antimicrobial effect in concentrations not toxic to mammalian cells: human fetal osteoblast (hFOB1.19), osteosarcoma (Saos-2), mouse preosteoblasts (MC3T3-E1), skin fibroblast (HDF), and mouse myoblast (C2C12). At higher concentration SOMPs, induced shape- and concentration-dependent cytotoxicity (according to MTT and BrdU assays). Tetrapod SOMPs had the smallest effect, whereas cubical SOMPs, the highest on cell viability. hFOB1.19 were the most resistant cells and C2C12, the most susceptible ones. We have proven that the induction of oxidative stress and inflammation is involved in the cytotoxic mechanism of SOMPs. After treatment with microparticles, we observed changes in levels of reactive oxygen species, first-line defense antioxidants-superoxide dismutase (SOD1, SOD3), and glutathione peroxidase (GPX4), metalloproteinase (MMP1, MMP3), and NF-κB protein. Neither cell cycle distribution nor ultrastructure was altered as determined by flow cytometry and transmission electron microscopy, respectively. In conclusion, silver orthophosphate may be a safe and effective antimicrobial agent on the implant surface. Spherical-shaped SOMPs are the most promising for biomedical application.


Asunto(s)
Antibacterianos/administración & dosificación , Antineoplásicos/administración & dosificación , Bacterias/crecimiento & desarrollo , Nanopartículas del Metal/administración & dosificación , Osteoblastos/citología , Osteosarcoma/patología , Fosfatos/química , Compuestos de Plata/química , Animales , Antibacterianos/química , Antineoplásicos/química , Bacterias/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Supervivencia Celular , Células Cultivadas , Humanos , Nanopartículas del Metal/química , Ratones , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31546990

RESUMEN

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6-11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained.

20.
Sci Total Environ ; 689: 79-89, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271992

RESUMEN

Self-organized TiO2 nanotubes as immobilized photocatalysts were evaluated in detail for the photocatalytic degradation of parabens mixtures from ultrapure water. This kind of approach can be a very suitable option for emerging contaminants degradation considering the possibility of the catalyst reuse and recovery which will be simpler than when catalytic powders are used. The anodization method was applied for the TiO2 nanotubes production under different preparation voltages (20, 30 and 40 V). These preparation conditions are important on the morphological characteristics of nanotubes such as length, as well as internal and external diameters. The photocatalytic efficiency was dependent on the materials preparation voltages. The photocatalytic oxidation was evaluated using two different irradiation sources, namely UVA and sunlight. These irradiation sources were evaluated for parabens mixture degradation using different number of catalytic plates. The increase of the number of plates improved the parabens degradation possibly due to the availability of more active sites which can be relevant for the hydroxyl radical's generation. The effect of the reactor design was also evaluated using sunlight irradiation. The configuration, position and solar concentrators can be important for the performance of degradation. The mechanism of degradation was analysed through by-products formation under sunlight irradiation. The main responsible for parabens degradation was hydroxyl radical. Decarboxylation, dealkylation and hydroxylation seem to be the most important reactional steps for the mixture decontamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...