Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 44(30): 6426-43, 2005 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16252654

RESUMEN

The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

2.
Appl Opt ; 42(9): 1629-47, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12665094

RESUMEN

We present a calibration approach for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) based on the reflectance properties of the instrument's onboard diffuser. This technique uses SeaWiFS as a reflectometer, measuring the reflected solar irradiance from the Earth and from the onboard diffuser. Because the Sun is the common source of light for both measurements, the ratio of the SeaWiFS-measured radiances from the Earth and the diffuser provide the ratio for the reflectances of the two samples. The reflectance characterization of the onboard diffuser is the calibration reference for this approach. Knowledge of the value of the solar irradiance is not required for these measurements because it falls out of the ratio. Knowledge of the absolute calibration coefficient for the SeaWiFS measurements of each of the two samples is not required either. Instead, the result of the ratioing technique is based on the linearity of the instrument's response to the intensity of the input light. The calibration requires knowledge, however, of the reflectance of the onboard diffuser at the start of the SeaWiFS mission and the response of the instrument bands, in digital numbers, for measurements of the diffuser at that time.

3.
Appl Opt ; 42(9): 1648-60, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12665095

RESUMEN

For instruments that carry onboard solar diffusers to orbit, such as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), it is possible to convert the instrument's reflectance measurements to radiance measurements by knowledge of the solar irradiance. This process, which generally requires the application of a solar irradiance model, is described. The application of the irradiance model is separate from the measurements by the instrument and from the instrument's reflectance calibration. In addition, SeaWiFS was calibrated twice before launch for radiance response by use of radiance sources with calibrations traceable to the National Institute of Standards and Technology. With the inclusion of the at-launch diffuser-based radiance calibration, SeaWiFS has three possible radiance calibrations forthe start of on-orbit operations. The combination of these three into a single calibration requires changes of 4% or less for the current at-launch radiance calibration of the instrument. Finally, this process requires changes of 4% or less for the reflectance calibration coefficients to provide consistency among the radiance calibration, the reflectance calibration, and the solar irradiance.

4.
J Res Natl Inst Stand Technol ; 108(3): 199-228, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-27413606

RESUMEN

As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration's Goddard Space Flight Center (NASA's GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan.

5.
J Res Natl Inst Stand Technol ; 97(3): 327-334, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-28053435

RESUMEN

A radiometer has been designed for precision colierent radiation measurements and tested for long-term repeatability at wavelengths of 488 and 633 nm. The radiometer consists of a pn silicon photodiode maintained in a nitrogen atmosphere with a quartz window designed to eliminate interference problems. Ratio measurements between the radiometer and an absolute type detector were made over a period of 215 d. At 0.5 mW, the standard deviations were 0.008% and 0.009% at 488 and 633 nm, respectively. The maximum deviations from the mean were 0.016% and 0.015% at the respective wavelengths. Measurements were also made on the radiometer with respect to angular and spatial uniformity and linearity. The high precision, simplicity, and portability of the radiometer suggest it for use as a transfer standard for radiometric measurements.

6.
J Res Natl Inst Stand Technol ; 95(5): 533-543, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-28179789

RESUMEN

A total of fifteen laboratories participated in the CIE detector response intercomparison which was designed to assess the level of agreement among participating laboratories in the absolute measurement (with respect to SI) of photodetector response in the visible spectral region. Most participants were either commercial laboratories or university laboratories with the National Institute of Standards and Technology (NIST) serving as the host laboratory. Each laboratory determined the absolute response of each of two silicon photodiode radiometers which were designed for the intercomparison by NIST. Approximately two-thirds of the laboratories reported response values which agreed with the NIST values to within ±1.0% at the two wavelengths of 488 and 633 nm.

7.
J Res Natl Inst Stand Technol ; 95(5): 549-558, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-28179791

RESUMEN

High-accuracy transmission measurements at an optical wavelength of 633 nm and mechanical measurements of the thickness of a 13-µm thick silicon-crystal film have been used to calculate the absorption and extinction coefficients of silicon at 633 nm. The results are 3105±62 cm-1 and 0.01564±0.00031, respectively. These results are about 15% less than current handbook data for the same quantities, but are in good agreement with a recent fit to one set of data described in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...