Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Data ; 11(1): 507, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755219

RESUMEN

In the pharmaceutical industry, the patent protection of drugs and medicines is accorded importance because of the high costs involved in the development of novel drugs. Over the years, researchers have analyzed patent documents to identify freedom-to-operate spaces for novel drug candidates. To assist this, several well-established public patent document data repositories have enabled automated methodologies for extracting information on therapeutic agents. In this study, we delve into one such publicly available patent database, SureChEMBL, which catalogues patent documents related to life sciences. Our exploration begins by identifying patent compounds across public chemical data resources, followed by pinpointing sections in patent documents where the chemical annotations were found. Next, we exhibit the potential of compounds to serve as drug candidates by evaluating their conformity to drug-likeness criteria. Lastly, we examine the drug development stage reported for these compounds to understand their clinical success. In summary, our investigation aims at providing a comprehensive overview of the patent compounds catalogued in SureChEMBL, assessing their relevance to pharmaceutical drug discovery.


Asunto(s)
Descubrimiento de Drogas , Patentes como Asunto , Bases de Datos Factuales , Industria Farmacéutica
2.
RSC Med Chem ; 15(4): 1176-1188, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665834

RESUMEN

The EU-OPENSCREEN (EU-OS) European Research Infrastructure Consortium (ERIC) is a multinational, not-for-profit initiative that integrates high-capacity screening platforms and chemistry groups across Europe to facilitate research in chemical biology and early drug discovery. Over the years, the EU-OS has assembled a high-throughput screening compound collection, the European Chemical Biology Library (ECBL), that contains approximately 100 000 commercially available small molecules and a growing number of thousands of academic compounds crowdsourced through our network of European and non-European chemists. As an extension of the ECBL, here we describe the computational design, quality control and use case screenings of the European Fragment Screening Library (EFSL) composed of 1056 mini and small chemical fragments selected from a substructure analysis of the ECBL. Access to the EFSL is open to researchers from both academia and industry. Using EFSL, eight fragment screening campaigns using different structural and biophysical methods have successfully identified fragment hits in the last two years. As one of the highlighted projects for antibiotics, we describe the screening by Bio-Layer Interferometry (BLI) of the EFSL, the identification of a 35 µM fragment hit targeting the beta-ketoacyl-ACP synthase 2 (FabF), its binding confirmation to the protein by X-ray crystallography (PDB 8PJ0), its subsequent rapid exploration of its surrounding chemical space through hit-picking of ECBL compounds that contain the fragment hit as a core substructure, and the final binding confirmation of two follow-up hits by X-ray crystallography (PDB 8R0I and 8R1V).

3.
SLAS Discov ; 29(4): 100155, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518955

RESUMEN

In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.

4.
Virus Res ; 343: 199356, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490582

RESUMEN

Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Reposicionamiento de Medicamentos , ARN Polimerasas Dirigidas por ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas no Estructurales Virales/metabolismo
5.
J Chem Inf Model ; 64(3): 892-904, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051605

RESUMEN

Many homodimeric enzymes tune their functions by exploiting either negative or positive cooperativity between subunits. In the SARS-CoV-2 Main protease (Mpro) homodimer, the latter has been suggested by symmetry in most of the 500 reported protease/ligand complex structures solved by macromolecular crystallography (MX). Here we apply the latter to both covalent and noncovalent ligands in complex with Mpro. Strikingly, our experiments show that the occupation of both active sites of the dimer originates from an excess of ligands. Indeed, cocrystals obtained using a 1:1 ligand/protomer stoichiometry lead to single occupation only. The empty binding site exhibits a catalytically inactive geometry in solution, as suggested by molecular dynamics simulations. Thus, Mpro operates through negative cooperativity with the asymmetric activity of the catalytic sites. This allows it to function with a wide range of substrate concentrations, making it resistant to saturation and potentially difficult to shut down, all properties advantageous for the virus' adaptability and resistance.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Ligandos , Proteasas 3C de Coronavirus/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
6.
J Control Release ; 364: 654-671, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939853

RESUMEN

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.


Asunto(s)
COVID-19 , Humanos , Ratones , Animales , Liposomas , Reposicionamiento de Medicamentos , Pandemias , Distribución Tisular , Pulmón , SARS-CoV-2
7.
Transl Oncol ; 38: 101783, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716258

RESUMEN

The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.

8.
Circ Res ; 133(8): 674-686, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37675562

RESUMEN

BACKGROUND: The ADAMTS7 locus was genome-wide significantly associated with coronary artery disease. Lack of the ECM (extracellular matrix) protease ADAMTS-7 (A disintegrin and metalloproteinase-7) was shown to reduce atherosclerotic plaque formation. Here, we sought to identify molecular mechanisms and downstream targets of ADAMTS-7 mediating the risk of atherosclerosis. METHODS: Targets of ADAMTS-7 were identified by high-resolution mass spectrometry of atherosclerotic plaques from Apoe-/- and Apoe-/-Adamts7-/- mice. ECM proteins were identified using solubility profiling. Putative targets were validated using immunofluorescence, in vitro degradation assays, coimmunoprecipitation, and Förster resonance energy transfer-based protein-protein interaction assays. ADAMTS7 expression was measured in fibrous caps of human carotid artery plaques. RESULTS: In humans, ADAMTS7 expression was higher in caps of unstable as compared to stable carotid plaques. Compared to Apoe-/- mice, atherosclerotic aortas of Apoe-/- mice lacking Adamts-7 (Apoe-/-Adamts7-/-) contained higher protein levels of Timp-1 (tissue inhibitor of metalloprotease-1). In coimmunoprecipitation experiments, the catalytic domain of ADAMTS-7 bound to TIMP-1, which was degraded in the presence of ADAMTS-7 in vitro. ADAMTS-7 reduced the inhibitory capacity of TIMP-1 at its canonical target MMP-9 (matrix metalloprotease-9). As a downstream mechanism, we investigated collagen content in plaques of Apoe-/- and Apoe-/-Adamts7-/- mice after a Western diet. Picrosirius red staining of the aortic root revealed less collagen as a readout of higher MMP-9 activity in Apoe-/- as compared to Apoe-/- Adamts7-/- mice. To facilitate high-throughput screening for ADAMTS-7 inhibitors with the aim of decreasing TIMP-1 degradation, we designed a Förster resonance energy transfer-based assay targeting the ADAMTS-7 catalytic site. CONCLUSIONS: ADAMTS-7, which is induced in unstable atherosclerotic plaques, decreases TIMP-1 stability reducing its inhibitory effect on MMP-9, which is known to promote collagen degradation and is likewise associated with coronary artery disease. Disrupting the interaction of ADAMTS-7 and TIMP-1 might be a strategy to increase collagen content and plaque stability for the reduction of atherosclerosis-related events.


Asunto(s)
Proteína ADAMTS7 , Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Humanos , Ratones , Proteína ADAMTS7/genética , Aterosclerosis/genética , Colágeno/metabolismo , Enfermedad de la Arteria Coronaria/genética , Metaloproteinasa 9 de la Matriz , Placa Aterosclerótica/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Ratones Noqueados para ApoE
9.
Heliyon ; 9(9): e19441, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37681175

RESUMEN

Adverse drug events constitute a major challenge for the success of clinical trials. Several computational strategies have been suggested to estimate the risk of adverse drug events in preclinical drug development. While these approaches have demonstrated high utility in practice, they are at the same time limited to specific information sources. Thus, many current computational approaches neglect a wealth of information which results from the integration of different data sources, such as biological protein function, gene expression, chemical compound structure, cell-based imaging and others. In this work we propose an integrative and explainable multi-modal Graph Machine Learning approach (MultiGML), which fuses knowledge graphs with multiple further data modalities to predict drug related adverse events and general drug target-phenotype associations. MultiGML demonstrates excellent prediction performance compared to alternative algorithms, including various traditional knowledge graph embedding techniques. MultiGML distinguishes itself from alternative techniques by providing in-depth explanations of model predictions, which point towards biological mechanisms associated with predictions of an adverse drug event. Hence, MultiGML could be a versatile tool to support decision making in preclinical drug development.

10.
ACS Omega ; 8(33): 30177-30185, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636935

RESUMEN

E3 ligases are enzymes that play a critical role in ubiquitin-mediated protein degradation and are involved in various cellular processes. Pharmacophore analysis is a useful approach for predicting E3 ligase binding selectivity, which involves identifying key chemical features necessary for a ligand to interact with a specific protein target cavity. While pharmacophore analysis is not always sufficient to accurately predict ligand binding affinity, it can be a valuable tool for filtering and/or designing focused libraries for screening campaigns. In this study, we present a fast and an inexpensive approach using a pharmacophore fingerprinting scheme known as ErG, which is used in a multi-class machine learning classification model. This model can assign the correct E3 ligase binder to its known E3 ligase and predict the probability of each molecule to bind to different E3 ligases. Practical applications of this approach are demonstrated on commercial libraries such as Asinex for the rational design of E3 ligase binders. The scripts and data associated with this study can be found on GitHub at https://github.com/Fraunhofer-ITMP/E3_binder_Model.

11.
Bioinform Adv ; 3(1): vbad045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187795

RESUMEN

Summary: The outbreak of Mpox virus (MPXV) infection in May 2022 is declared a global health emergency by WHO. A total of 84 330 cases have been confirmed as of 5 January 2023 and the numbers are on the rise. The MPXV pathophysiology and its underlying mechanisms are unfortunately not yet understood. Likewise, the knowledge of biochemicals and drugs used against MPXV and their downstream effects is sparse. In this work, using Knowledge Graph (KG) representations we have depicted chemical and biological aspects of MPXV. To achieve this, we have collected and rationally assembled several biological study results, assays, drug candidates and pre-clinical evidence to form a dynamic and comprehensive network. The KG is compliant with FAIR annotations allowing seamless transformation and integration to/with other formats and infrastructures. Availability and implementation: The programmatic scripts for Mpox KG are publicly available at https://github.com/Fraunhofer-ITMP/mpox-kg. It is hosted publicly at https://doi.org/10.18119/N9SG7D. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

12.
Sci Rep ; 13(1): 7159, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137934

RESUMEN

In addition to vaccines, the World Health Organization sees novel medications as an urgent matter to fight the ongoing COVID-19 pandemic. One possible strategy is to identify target proteins, for which a perturbation by an existing compound is likely to benefit COVID-19 patients. In order to contribute to this effort, we present GuiltyTargets-COVID-19 ( https://guiltytargets-covid.eu/ ), a machine learning supported web tool to identify novel candidate drug targets. Using six bulk and three single cell RNA-Seq datasets, together with a lung tissue specific protein-protein interaction network, we demonstrate that GuiltyTargets-COVID-19 is capable of (i) prioritizing meaningful target candidates and assessing their druggability, (ii) unraveling their linkage to known disease mechanisms, (iii) mapping ligands from the ChEMBL database to the identified targets, and (iv) pointing out potential side effects in the case that the mapped ligands correspond to approved drugs. Our example analyses identified 4 potential drug targets from the datasets: AKT3 from both the bulk and single cell RNA-Seq data as well as AKT2, MLKL, and MAPK11 in the single cell experiments. Altogether, we believe that our web tool will facilitate future target identification and drug development for COVID-19, notably in a cell type and tissue specific manner.


Asunto(s)
COVID-19 , Humanos , Ligandos , Pandemias , Aprendizaje Automático , Proteínas/metabolismo
13.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322820

RESUMEN

MOTIVATION: Drug discovery practitioners in industry and academia use semantic tools to extract information from online scientific literature to generate new insights into targets, therapeutics and diseases. However, due to complexities in access and analysis, patent-based literature is often overlooked as a source of information. As drug discovery is a highly competitive field, naturally, tools that tap into patent literature can provide any actor in the field an advantage in terms of better informed decision-making. Hence, we aim to facilitate access to patent literature through the creation of an automatic tool for extracting information from patents described in existing public resources. RESULTS: Here, we present PEMT, a novel patent enrichment tool, that takes advantage of public databases like ChEMBL and SureChEMBL to extract relevant patent information linked to chemical structures and/or gene names described through FAIR principles and metadata annotations. PEMT aims at supporting drug discovery and research by establishing a patent landscape around genes of interest. The pharmaceutical focus of the tool is mainly due to the subselection of International Patent Classification codes, but in principle, it can be used for other patent fields, provided that a link between a concept and chemical structure is investigated. Finally, we demonstrate a use-case in rare diseases by generating a gene-patent list based on the epidemiological prevalence of these diseases and exploring their underlying patent landscapes. AVAILABILITY AND IMPLEMENTATION: PEMT is an open-source Python tool and its source code and PyPi package are available at https://github.com/Fraunhofer-ITMP/PEMT and https://pypi.org/project/PEMT/, respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metadatos , Programas Informáticos , Bases de Datos Factuales
14.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332546

RESUMEN

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Cisteína Endopeptidasas/metabolismo , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
15.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36115062

RESUMEN

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligandos , Diseño de Fármacos
16.
Sci Data ; 9(1): 405, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831315

RESUMEN

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos
17.
Biomed Pharmacother ; 151: 113104, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643072

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has continuously evolved, resulting in the emergence of several variants of concern (VOCs). To study mechanisms of viral entry and potentially identify specific inhibitors, we pseudotyped lentiviral vectors with different SARS-CoV-2 VOC spike variants (D614G, Alpha, Beta, Delta, Omicron/BA.1), responsible for receptor binding and membrane fusion. These SARS-CoV-2 lentiviral pseudoviruses were applied to screen 774 FDA-approved drugs. For the assay we decided to use CaCo2 cells, since they equally allow cell entry through both the direct membrane fusion pathway mediated by TMPRSS2 and the endocytosis pathway mediated by cathepsin-L. The active molecules which showed stronger differences in their potency to inhibit certain SARS-CoV-2 VOCs included antagonists of G-protein coupled receptors, like phenothiazine-derived antipsychotic compounds such as Chlorpromazine, with highest activity against the Omicron pseudovirus. In general, our data showed that the various VOCs differ in their preferences for cell entry, and we were able to identify synergistic combinations of inhibitors. Notably, Omicron singled out by relying primarily on the endocytosis pathway while Delta preferred cell entry via membrane fusion. In conclusion, our data provide new insights into different entry preferences of SARS-CoV-2 VOCs, which might help to identify new drug targets.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Células CACO-2 , Evaluación Preclínica de Medicamentos , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo
18.
Patterns (N Y) ; 3(3): 100433, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510183

RESUMEN

The high number of failed pre-clinical and clinical studies for compounds targeting Alzheimer disease (AD) has demonstrated that there is a need to reassess existing strategies. Here, we pursue a holistic, mechanism-centric drug repurposing approach combining computational analytics and experimental screening data. Based on this integrative workflow, we identified 77 druggable modifiers of tau phosphorylation (pTau). One of the upstream modulators of pTau, HDAC6, was screened with 5,632 drugs in a tau-specific assay, resulting in the identification of 20 repurposing candidates. Four compounds and their known targets were found to have a link to AD-specific genes. Our approach can be applied to a variety of AD-associated pathophysiological mechanisms to identify more repurposing candidates.

19.
Drug Discov Today ; 27(8): 2080-2085, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35595012

RESUMEN

Despite the intuitive value of adopting the Findable, Accessible, Interoperable, and Reusable (FAIR) principles in both academic and industrial sectors, challenges exist in resourcing, balancing long- versus short-term priorities, and achieving technical implementation. This situation is exacerbated by the unclear mechanisms by which costs and benefits can be assessed when decisions on FAIR are made. Scientific and research and development (R&D) leadership need reliable evidence of the potential benefits and information on effective implementation mechanisms and remediating strategies. In this article, we describe procedures for cost-benefit evaluation, and identify best-practice approaches to support the decision-making process involved in FAIR implementation.


Asunto(s)
Descubrimiento de Drogas , Análisis Costo-Beneficio
20.
ACS Pharmacol Transl Sci ; 5(4): 226-239, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35434533

RESUMEN

SARS-CoV-2 infection is still spreading worldwide, and new antiviral therapies are an urgent need to complement the approved vaccine preparations. SARS-CoV-2 nps13 helicase is a validated drug target participating in the viral replication complex and possessing two associated activities: RNA unwinding and 5'-triphosphatase. In the search of SARS-CoV-2 direct antiviral agents, we established biochemical assays for both SARS-CoV-2 nps13-associated enzyme activities and screened both in silico and in vitro a small in-house library of natural compounds. Myricetin, quercetin, kaempferol, and flavanone were found to inhibit the SARS-CoV-2 nps13 unwinding activity at nanomolar concentrations, while licoflavone C was shown to block both SARS-CoV-2 nps13 activities at micromolar concentrations. Mode of action studies showed that all compounds are nsp13 noncompetitive inhibitors versus ATP, while computational studies suggested that they can bind both nucleotide and 5'-RNA nsp13 binding sites, with licoflavone C showing a unique pattern of interaction with nsp13 amino acid residues. Overall, we report for the first time natural flavonoids as selective inhibitors of SARS-CoV-2 nps13 helicase with low micromolar activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...