Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 307(Pt 2): 135626, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35863415

RESUMEN

The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.


Asunto(s)
Membranas Artificiales , Diálisis Renal , Materiales Biocompatibles , Interacciones Hidrofóbicas e Hidrofílicas
2.
Chemosphere ; 303(Pt 2): 135073, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35644232

RESUMEN

Mixed matrix membranes (MMMs) are synthesized for efficient CO2 separation released from various anthropogenic sources, which are due to global environmental concerns. The synergetic effect of porous nitrogen-rich, CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competent. The development of various loadings of porphyrin poly(N-isopropyl Acryl Amide) (P-NIPAM)as functionalized organic fillers (5-20%) in polysulfone (PSU) through solution casting is carried out followed by the various characterizations including field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectrometer(FT-IR) analysis and pure and mixed gas permeations ranging from 2 to 10 bar feed pressure. Due to both organic species interactions in the matrix, well-distributed fillers and homogenous surfaces, and cross-sectional structures were observed due to π-π interactions and Lewis's basic functionalities. The strong affinity of porous nitrogen-rich and CO2-philic fillers through gas permeation analysis showed high CO2/CH4 and CO2/N2 gas performance that surpassed Robeson's upper bound limit. Comparatively, MMMs showed improved CO2/CH4 permeabilities from 87.5 ± 0.5 Barrer to 88.2 ± 0.9 Barrer than pure polymer matrix. For CO2/N2, CO2 permeabilities improved to 75 ± 0.8 Barrer than pure polymer matrix. For both gas pairs (CO2/CH4, CO2/N2), respective pureselectivities (84%; 86%) and binary selectivities (85% and 85%)were improved. Various theoretical gas permeation models were used to predict CO2 permeabilities for MMMs from which the modified Maxwell-Wagner-Sillar model showed the least AARE% of 0.87. The results showed promising results for efficient CO2 separation due to exceptional functionalized P-PNIPAM affinitive properties. Finally, cost analysis reflected the inflated cost of membranes production for industrial setup using indigenous resources.


Asunto(s)
Dióxido de Carbono , Restauración y Remediación Ambiental , Estudios Transversales , Excipientes , Nitrógeno , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier
3.
Int J Artif Organs ; 45(1): 14-26, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33706595

RESUMEN

In the current study, dahllite/hydroxyapatite/collagen filler extracted via calcination of wasted chicken bone was blended with PSf polymer to obtain highly biocompatible, and antifoulant hemodialysis membranes. FTIR and Raman spectroscopic analysis was done to obtain information about the bonding chemistry of the obtained filler. The intermolecular interaction that existed between dahllite/hydroxyapatite/collagen filler and pristine PSf was confirmed by Raman spectroscopic study. The PSf polymer exhibited a sponge-like structure owing to its high thickness and slow exchange with non-solvent in coagulation bath whilst the instantaneous de-mixing course produced finger-like capillaries in dahllite/hydroxyapatite/collagen filler based PSf membranes as exposed by SEM photographs. The presence of different wt. % of filler composition in the PSf matrix improved the mechanical strength as revealed by fatigue analysis. The hydrophilic character improved by 78% while leaching consistency adjusted to 0%-4%. Pure water permeation (PWP) flux improved by nine times. The pore profile improved with the addition of filler as revealed by hydrophilicity experiment, PWP flux, and SEM micrographs. Fouling evaluation results disclosed that filler based membranes showed 36% less adsorption of protein (BSA) solution together with more than 84% flux recovery ratio. The biocompatibility valuation analysis unveiled that membranes composed of filler showed extended prothrombin and thrombin coagulation times, reduced activation of fibrinogen mass, and less adhesion of plasma proteins in comparison with pristine PSf membrane. The adsorption capacity of fabricated membranes for urea and creatinine improved by 31% (in the case of urea) and 34% (in the case of creatinine) in contrast with pristine PSf membrane. The overall results showed that the M-3 membrane was optimized in terms of surface properties, protein adhesion, anticoagulation activity, and adsorption amount of urea and creatinine.


Asunto(s)
Materiales Biocompatibles , Huesos/química , Durapatita , Animales , Apatitas , Pollos , Colágeno , Membranas Artificiales , Polímeros , Diálisis Renal , Sulfonas
4.
Artif Organs ; 45(11): 1377-1390, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34152645

RESUMEN

In the current study, a phase inversion scheme was employed to fabricate hydroxyapatite (HA)/polysulfone (PSF)-based asymmetric membranes using a film applicator with water as a solvent and nonsolvent exchanging medium. Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) spectroscopic studies were conducted to confirm the bonding chemistry and purity of filler. The inherent thick nature of PSF generated sponge-like shape while the instantaneous demixing process produced finger-like pore networks in HA/PSF-based asymmetric membranes as exhibited by scanning electron microscope (SEM) micrographs. The FTIR spectra confirmed noncovalent weak attractions toward the polymer surface. The leaching ratio was evaluated to observe the dispersion behavior of HA filler in membrane composition. Hydrophilicity, pore profile, pure water permeation (PWP) flux, and molecular weight cutoff (MWCO) values of all formulated membranes were also calculated. Antifouling results revealed that HA modified PSF membranes exhibited 43% less adhesion of bovine serum albumin (BSA) together with >86% recovery of flux. Membrane composition showed 74% total resistance, out of which 60% was reversible resistance. Biocompatibility evaluation revealed that the modified membranes exhibited prothrombin time (PT), and thrombin time (TT) comparable with typical blood plasma, whereas proliferation of living cells over membrane surface proved its nontoxic behavior toward biomedical application. The urea and creatinine showed effective adsorption aptitude toward HA loaded PSF membranes.


Asunto(s)
Durapatita/química , Membranas Artificiales , Polímeros/química , Sulfonas/química , Animales , Creatinina/química , Humanos , Ensayo de Materiales , Ratones , Células 3T3 NIH , Diálisis Renal/instrumentación , Urea/química
5.
Artif Organs ; 45(8): E265-E279, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33559192

RESUMEN

Carbonate apatite/hydroxyapatite (CO3Ap/HAP) additive was obtained by calcination of wasted chicken bones at 900°C. Intermolecular attraction exists between CO3Ap/HAP additive and blended polysulfone (PSF) polymer. Electron dispersive X-ray (EDX) and FTIR analysis were carried out to check the elemental composition and bonding chemistry of prepared additive. The instantaneous demixing process generated consistent finger-like networks in CO3Ap/HAP/PSF-based composite membranes while sponge-like structure was shown by PSF as revealed by SEM images. The increase in weight % of additive loading is also confirmed by EDX analysis. Furthermore, the interaction mechanism of CO3Ap/HAP additive with polysulfone medium was analyzed by FTIR exploration. The water absorption experiment defined a 93% expansion in hydrophilic performance. Change in porosity occurs with additive loading and pure water permeation flux improved up to 11 times. Approximately, antifouling results revealed that 87% of water flux was recovered after treating with a protein solution, whereas a 30% improvement in antifouling capability in case of bovine serum albumin solution occurred. In vitro cytotoxicity, and clotting times study was carried out to evaluate virulent behavior and anticoagulation activity of formulated membranes.


Asunto(s)
Materiales Biocompatibles/síntesis química , Membranas Artificiales , Diálisis Renal/instrumentación , Animales , Apatitas/química , Pollos , Durapatita/química , Diseño de Equipo , Microscopía Electrónica de Rastreo , Estructura Molecular , Polímeros/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Sulfonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...