Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1184285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363395

RESUMEN

Introduction: Breast cancer (BC) diagnostics lack noninvasive methods and procedures for screening and monitoring disease dynamics. Admitted CellSearch® is used for fluid biopsy and capture of circulating tumor cells of only epithelial origin. Here we describe an RNA aptamer (MDA231) for detecting BC cells in clinical samples, including blood. The MDA231 aptamer was originally selected against triple-negative breast cancer cell line MDA-MB-231 using cell-SELEX. Methods: The aptamer structure in solution was predicted using mFold program and molecular dynamic simulations. The affinity and specificity of the evolved aptamers were evaluated by flow cytometry and laser scanning microscopy on clinical tissues from breast cancer patients. CTCs were isolated form the patients' blood using the developed method of aptamer-based magnetic separation. Breast cancer origin of CTCs was confirmed by cytological, RT-qPCR and Immunocytochemical analyses. Results: MDA231 can specifically recognize breast cancer cells in surgically resected tissues from patients with different molecular subtypes: triple-negative, Luminal A, and Luminal B, but not in benign tumors, lung cancer, glial tumor and healthy epithelial from lungs and breast. This RNA aptamer can identify cancer cells in complex cellular environments, including tumor biopsies (e.g., tumor tissues vs. margins) and clinical blood samples (e.g., circulating tumor cells). Breast cancer origin of the aptamer-based magnetically separated CTCs has been proved by immunocytochemistry and mammaglobin mRNA expression. Discussion: We suggest a simple, minimally-invasive breast cancer diagnostic method based on non-epithelial MDA231 aptamer-specific magnetic isolation of circulating tumor cells. Isolated cells are intact and can be utilized for molecular diagnostics purposes.

2.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090419

RESUMEN

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

3.
Nucleic Acid Ther ; 32(6): 497-506, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35921069

RESUMEN

Cisplatin is an effective drug for treating various cancer types. However, it is highly toxic for both healthy and tumor cells. Therefore, there is a need to reduce its therapeutic dose and increase targeted bioavailability. One of the ways to achieve this could be the coating of cisplatin with polysaccharides and specific carriers for targeted delivery. Nucleic acid aptamers could be used as carriers for the specific delivery of medicine to cancer cells. Cisplatin-arabinogalactan-aptamer (Cis-AG-Ap) conjugate was synthesized based on Cis-dichlorodiammineplatinum, Siberian larch arabinogalactan, and aptamer AS-42 specific to heat-shock proteins (HSP) 71 kDa (Hspa8) and HSP 90-beta (Hsp90ab1). The antitumor effect was estimated using ascites and metastatic Ehrlich tumor models. Cis-AG-Ap toxicity was assessed by blood biochemistry on healthy mice. Here, we demonstrated enhanced anticancer activity of Cis-AG-Ap and its specific accumulation in tumor foci. It was shown that targeted delivery allowed a 15-fold reduction in the therapeutic dose of cisplatin and its toxicity. Cis-AG-Ap sufficiently suppressed the growth of Ehrlich's ascites carcinoma, the mass and extent of tumor metastasis in vivo. Arabinogalactan and the aptamers promoted cisplatin efficiency by enhancing its bioavailability. The described strategy could be very promising for targeted anticancer therapy.


Asunto(s)
Ácidos Nucleicos , Animales , Ratones , Cisplatino/farmacología
4.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35025110

RESUMEN

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus
5.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34883850

RESUMEN

We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer's defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker's presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Neoplasias Pulmonares , Simulación por Computador , Técnicas Electroquímicas , Electrodos , Oro , Humanos , Neoplasias Pulmonares/diagnóstico
6.
Mol Ther Nucleic Acids ; 26: 1159-1172, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34853715

RESUMEN

Identification of primary tumors and metastasis sites is an essential step in cancer diagnostics and the following treatment. Positron emission tomography-computed tomography (PET/CT) is one of the most reliable methods for scanning the whole organism for malignancies. In this work, we synthesized an 11C-labeled oligonucleotide primer and hybridized it to an anti-cancer DNA aptamer. The 11C-aptamer was applied for in vivo imaging of Ehrlich ascites carcinoma and its metastases in mice using PET/CT. The imaging experiments with the 11C-aptamer determined very small primary and secondary tumors of 3 mm2 and less. We also compared 11C imaging with the standard radiotracer, 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), and found better selectivity of the 11C-aptamer to metastatic lesions in the metabolically active organs than 18F-FDG. 11C radionuclide with an ultra-short (20.38 min) half-life is considered safest for PET/CT imaging and does not cause false-positive results in heart imaging. Its combination with aptamers gives us high-specificity and high-contrast imaging of cancer cells and can be applied for PET/CT-guided drug delivery in cancer therapies.

7.
Mol Ther Nucleic Acids ; 25: 316-327, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34458013

RESUMEN

Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.

8.
Nanomaterials (Basel) ; 11(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072903

RESUMEN

Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand-a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic-ferromagnet-non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.

9.
Biomedicines ; 8(3)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183370

RESUMEN

Aptamer-based approaches are very promising tools in nanomedicine. These small single-stranded DNA or RNA molecules are often used for the effective delivery and increasing biocompatibility of various therapeutic agents. Recently, magnetic nanoparticles (MNPs) have begun to be successfully applied in various fields of biomedicine. The use of MNPs is limited by their potential toxicity, which depends on their biocompatibility. The functionalization of MNPs by ligands increases biocompatibility by changing the charge and shape of MNPs, preventing opsonization, increasing the circulation time of MNPs in the blood, thus shielding iron ions and leading to the accumulation of MNPs only in the necessary organs. Among various ligands, aptamers, which are synthetic analogs of antibodies, turned out to be the most promising for the functionalization of MNPs. This review describes the factors that determine MNPs' biocompatibility and affect their circulation time in the bloodstream, biodistribution in organs and tissues, and biodegradation. The work also covers the role of the aptamers in increasing MNPs' biocompatibility and reducing toxicity.

10.
Cancers (Basel) ; 12(1)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952299

RESUMEN

Nanotechnologies involving physical methods of tumor destruction using functional oligonucleotides are promising for targeted cancer therapy. Our study presents magnetodynamic therapy for selective elimination of tumor cells in vivo using DNA aptamer-functionalized magnetic nanoparticles exposed to a low frequency alternating magnetic field. We developed an enhanced targeting approach of cancer cells with aptamers and arabinogalactan. Aptamers to fibronectin (AS-14) and heat shock cognate 71 kDa protein (AS-42) facilitated the delivery of the nanoparticles to Ehrlich carcinoma cells, and arabinogalactan (AG) promoted internalization through asialoglycoprotein receptors. Specific delivery of the aptamer-modified FeAG nanoparticles to the tumor site was confirmed by magnetic resonance imaging (MRI). After the following treatment with a low frequency alternating magnetic field, AS-FeAG caused cancer cell death in vitro and tumor reduction in vivo. Histological analyses showed mechanical disruption of tumor tissues, total necrosis, cell lysis, and disruption of the extracellular matrix. The enhanced targeted magnetic theranostics with the aptamer conjugated superparamagnetic ferroarabinogalactans opens up a new venue for making biocompatible contrasting agents for MRI imaging and performing non-invasive anti-cancer therapies with a deep penetrated magnetic field.

11.
Mol Ther Nucleic Acids ; 19: 157-167, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31837605

RESUMEN

Epilepsy is the fourth most prevalent brain disorder affecting millions of people of all ages. Epilepsy is divided into six categories different in etiology and molecular mechanisms; however, their common denominator is the inability to maintain ionic homeostasis. Antiepileptic drugs have a broad spectrum of action and high toxicity to the whole organism. In many cases, they could not penetrate the blood-brain barrier (BBB) and reach corresponding targets. Nucleic acid aptamers are a new and promising class of antiepileptic drugs as they are non-toxic, specific, and able to regulate the permeability of ion channels or inhibit inflammatory proteins. In this review, we summarize the mechanisms of epileptogenesis and its interconnection with the BBB and show the potential of aptamers for antiepileptic treatment.

12.
Anal Bioanal Chem ; 411(25): 6723-6732, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31396648

RESUMEN

Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR). The approach consists of (i) acquiring SAXS experimental data of an aptamer in solution, (ii) building a spatial distribution of the molecule's electron density using SAXS results, (iii) constructing a 3D model of the aptamer from its nucleotide primary sequence and secondary structure, and (iv) comparing and refining the modeled 3D structures with the experimental SAXS model. In the proof-of-principle we analyzed the 3D structure of RE31 aptamer to thrombin in a native free state at different temperatures and validated it by circular dichroism (CD). The resulting 3D structure of RE31 has the most energetically favorable conformation and the same elements such as a B-form duplex, non-complementary region, and two G-quartets which were previously reported by X-ray diffraction (XRD) from a single crystal. More broadly, this study demonstrates the complementary approach for constructing and adjusting the 3D structures of aptamers, DNAzymes, and ribozymes in solution, and could supply new opportunities for developing functional nucleic acids. Graphical abstract.


Asunto(s)
Aptámeros de Nucleótidos/química , Algoritmos , Simulación por Computador , G-Cuádruplex , Modelos Moleculares , Conformación de Ácido Nucleico , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
13.
Talanta ; 199: 674-678, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952314

RESUMEN

Two high-affinity DNA aptamers for lung tumor cells were applied as biospecific elements in bioluminescent assay of patient blood. The oligonucleotide complementary to the 5' end of both aptamers carrying either biotin or Ca2+-regulated photoprotein obelin was used to form a sandwich-type analytical complex on the surfaces of magnetic streptavidin-activated microspherical particles. Clinical blood samples from cases of morphologically confirmed lung cancer and control samples were analyzed applying the developed assay. From the receiver operator curve (ROC) analysis, the chosen threshold value as clinical decision limit offers the sensitivity of 91.5% and the specificity of 75% (p < 0.001). The area under ROC curve with the value of 0.901 distinguishes well between the two groups under investigation.


Asunto(s)
Aptámeros de Nucleótidos/química , Mediciones Luminiscentes , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico por imagen , Humanos , Campos Magnéticos , Curva ROC , Estreptavidina/química
14.
Cancers (Basel) ; 11(3)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871104

RESUMEN

We selected DNA aptamers to the epithelial cell adhesion molecule (EpCAM) expressed on primary lung cancer cells isolated from the tumors of patients with non-small cell lung cancer using competitive displacement of aptamers from EpCAM by a corresponding antibody. The resulting aptamers clones showed good nanomolar affinity to EpCAM-positive lung cancer cells. Confocal microscopy imaging and spectral profiling of lung cancer tissues confirmed the same protein target for the aptamers and anti-EpCAM antibodies. Furthermore, the resulted aptamers were successfully applied for isolation and detection of circulating tumor cells in clinical samples of peripheral blood of lung cancer patients.

15.
Mol Ther Nucleic Acids ; 9: 12-21, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246290

RESUMEN

Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.

16.
Cancers (Basel) ; 9(11)2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137182

RESUMEN

Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate.

17.
Theranostics ; 7(13): 3326-3337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900513

RESUMEN

Biomedical applications of magnetic nanoparticles under the influence of a magnetic field have been proved useful beyond expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug nanocarriers, and contrast agents; various strategies have been suggested to selectively target tumor cancer cells. Our study presents magnetodynamic nanotherapy using DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a low frequency alternating magnetic field for selective elimination of tumor cells in vivo. The cell specific DNA aptamer AS-14 binds to the fibronectin protein in Ehrlich carcinoma hence helps deliver the gold-coated magnetic nanoparticles to the mouse tumor. Applying an alternating magnetic field of 50 Hz at the tumor site causes the nanoparticles to oscillate and pull the fibronectin proteins and integrins to the surface of the cell membrane. This results in apoptosis followed by necrosis of tumor cells without heating the tumor, adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency alternating magnetic field demonstrates a unique non-invasive nanoscalpel technology for precise cancer surgery at the single cell level.


Asunto(s)
Aptámeros de Nucleótidos/química , Oro/química , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas del Metal/química , Animales , Apoptosis , Caspasas/metabolismo , Línea Celular Tumoral , Femenino , Masculino , Ratones Endogámicos ICR , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia
18.
Adv Exp Med Biol ; 994: 67-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28560668

RESUMEN

Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .


Asunto(s)
Aptámeros de Nucleótidos/química , Biomarcadores de Tumor/metabolismo , Separación Celular/métodos , Neoplasias/sangre , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisión/métodos , Humanos , Neoplasias/diagnóstico
19.
Mol Ther Nucleic Acids ; 6: 150-162, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28325282

RESUMEN

Nucleic acid aptamers are becoming popular as molecular probes for identification and imaging pathology and, at the same time, as a convenient platform for targeted therapy. Recent studies have shown that aptamers may be effectively used for tumor characterization and as commercially available monoclonal antibodies. Here we present three DNA aptamers binding to whole transformed lung cancer tissues, including tumor cells, connective tissues, and blood vessels. Protein targets have been revealed using affinity purification followed by mass spectrometry analyses, and they have been validated using a panel of correspondent antibodies and 3D imaging of tumor tissues. Each of the proteins targeted by the aptamers is involved in cancer progression and most of them are crucial for lung adenocarcinoma. We propose the use of these aptamers in aptahistochemistry for the characterization of the histological structure of lung adenocarcinoma. The value of the presented aptamers is their application together or separately for indicating the spread of neoplastic transformation, for complex differential diagnostics, and for targeted therapy of the tumor itself as well as all transformed structures of the adjacent tissues. Moreover, it has been demonstrated that these aptamers could be used for intraoperative tumor visualization and margin assessment.

20.
Nucleic Acid Ther ; 27(2): 105-114, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27923103

RESUMEN

Magnetomechanical cell disruption using nano- and microsized structures is a promising biomedical technology used for noninvasive elimination of diseased cells. It applies alternating magnetic field (AMF) for ferromagnetic microdisks making them oscillate and causing cell membrane disruption with cell death followed by apoptosis. In this study, we functionalized the magnetic microdisks with cell-binding DNA aptamers and guided the microdisks to recognize cancerous cells in a mouse tumor in vivo. Only 10 min of the treatment with a 100 Hz AMF was enough to eliminate cancer cells from a malignant tumor. Our results demonstrate a good perspective of using aptamer-modified magnetic microdisks for noninvasive microsurgery for tumors.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Carcinoma de Ehrlich/terapia , Magnetoterapia/métodos , Campos Magnéticos , Microcirugia/métodos , Animales , Aptámeros de Nucleótidos/síntesis química , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Fibronectinas/metabolismo , Filaminas/metabolismo , Inyecciones Intralesiones , Magnetoterapia/instrumentación , Imanes , Masculino , Ratones , Ratones Endogámicos ICR , Trasplante de Neoplasias , Unión Proteica , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...