Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38247501

RESUMEN

Olive leaves are an abundant by-product of olive oil production. Olive leaf extracts (OLEs) are rich in polyphenols, which can be used for health benefits. As polyphenols are the main antioxidant molecules in plants, plants typically increase their polyphenol content when exposed to drought stress. However, the phenolic profile of OLEs can vary in relation to the origin and variety of the plant material. In this work, olive leaf extracts from three different Italian olive cultivars (Giarraffa, Leccino, and Maurino) both exposed and not exposed to drought stress were studied in terms of antioxidant properties and profile, intestinal permeation, and protection against oxidative stress of human umbilical vein endothelial cells (HUVECs), since HUVECs are considered a model to study a wide range of diseases. OLEs from stressed Maurino and Giarraffa plants showed the highest increase in antioxidant capacity compared to controls. The phenolic profile of Maurino' was mainly increased by water deficit, with a large increase in the compounds oleuropein and luteolin-7-O-rutinoside. All tested extracts exposed to a water deficit protected HUVECs against oxidative stress by reducing ROS production, and this effect was more pronounced in OLEs from Giarraffa and Maurino exposed to drought stress compared to all other extracts. Finally, OLE from the stressed Giarraffa group showed a higher apparent permeability of antioxidant molecules than that of Maurino.

2.
Int J Biol Macromol ; 254(Pt 3): 127939, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951441

RESUMEN

The aim was to design and evaluate a chitosan-based conjugate providing high mucoadhesiveness and antibacterial activity for ocular infections treatment. Chitosan was conjugated with maleic acid via amide bond formation and infrared spectroscopy. Furthermore, 2,4,6-Trinitrobenzene sulfonic acid (TNBS) allowed characterization and quantification of conjugated groups, respectively. Biocompatibility was tested via hemolysis assay and Hen's Egg-Chorioallantoic membrane test. Characterization of the pH and osmolarity of hydrogels was followed by mucoadhesion assessment utilizing rheology. In addition, antibacterial studies were carried out towards Escherichia coli by broth microdilution test and agar-disk diffusion assay. In vivo studies were carried out following the already established Draize test and determining pharmacokinetic profile of dexamethasone in aqueous humour. The conjugate exhibited a degree of modification of 50.05 % and no toxicity or irritability. Moreover, mucoadhesive properties were enhanced in 2.68-fold and 1.81-fold for elastic and viscous modulus, respectively. Furthermore, rheological synergism revealed the presence of a gel-like structure. Additionally, broth microdilution and agar disk diffusion studies exhibited enhancement in antibacterial activity. Finally, in vivo studies manifested that hydrogels were highly tolerated, evidencing promising characteristics of the developed conjugate. The conjugate presented promising antimicrobial, long lasting mucoadhesive features and highly improved pharmacokinetics, leading to a revolutionizing approach in the treatment of ocular bacterial infections.


Asunto(s)
Quitosano , Hidrogeles , Animales , Femenino , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/farmacología , Quitosano/química , Agar , Pollos , Antibacterianos/farmacología , Antibacterianos/química
3.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376068

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently available. ARDS involves severe respiratory failure, fibrin deposition in both airways and lung parenchyma, with the development of an obstructing hyaline membrane drastically limiting gas exchange. Moreover, hypercoagulation is related to deep lung inflammation, and a pharmacological action toward both aspects is expected to be beneficial. Plasminogen (PLG) is a main component of the fibrinolytic system playing key roles in various inflammation regulatory processes. The inhalation of PLG has been proposed in the form of the off-label administration of an eyedrop solution, namely, a plasminogen-based orphan medicinal product (PLG-OMP), by means of jet nebulisation. Being a protein, PLG is susceptible to partial inactivation under jet nebulisation. The aim of the present work is to demonstrate the efficacy of the mesh nebulisation of PLG-OMP in an in vitro simulation of clinical off-label administration, considering both the enzymatic and immunomodulating activities of PLG. Biopharmaceutical aspects are also investigated to corroborate the feasibility of PLG-OMP administration by inhalation. The nebulisation of the solution was performed using an Aerogen® SoloTM vibrating-mesh nebuliser. Aerosolised PLG showed an optimal in vitro deposition profile, with 90% of the active ingredient impacting the lower portions of a glass impinger. The nebulised PLG remained in its monomeric form, with no alteration of glycoform composition and 94% of enzymatic activity maintenance. Activity loss was observed only when PLG-OMP nebulisation was performed under simulated clinical oxygen administration. In vitro investigations evidenced good penetration of aerosolised PLG through artificial airway mucus, as well as poor permeation across an Air-Liquid Interface model of pulmonary epithelium. The results suggest a good safety profile of inhalable PLG, excluding high systemic absorption but with good mucus diffusion. Most importantly, the aerosolised PLG was capable of reversing the effects of an LPS-activated macrophage RAW 264.7 cell line, demonstrating the immunomodulating activity of PLG in an already induced inflammatory state. All physical, biochemical and biopharmaceutical assessments of mesh aerosolised PLG-OMP provided evidence for its potential off-label administration as a treatment for ARDS patients.

4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769037

RESUMEN

The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Ratones , Animales , Excipientes , Betaína/farmacología , Líquidos Iónicos/farmacología , Carnitina , Soluciones Oftálmicas/farmacología , Bromuros , Antiinfecciosos/farmacología , Antraquinonas/farmacología , Ésteres
5.
Foods ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36496668

RESUMEN

Bergamot essential oil (BEO) possess antimicrobial, antiproliferative, anti-inflammatory, analgesic, neuroprotective, and cardiovascular effects. However, it is rich in volatile compounds, e.g., limonene, that are susceptible to conversion and degradation reactions. The aim of this communication was to prepare a conjugate based on a quaternary ammonium chitosan derivative (QA-Ch) and methyl-ßCD (MCD), coded as BEO/QA-Ch-MCD, to encapsulate BEO in order to stabilize its volatile compounds, eliminate its unpleasant taste, and convert the oil in a solid dosage form. The obtained conjugate, BEO/QA-Ch-MCD, was highly soluble and had a percentage of extract association efficiency (AE %), in terms of polyphenols and limonene contents, of 22.0 ± 0.9 and 21.9 ± 1.2, respectively. Moreover, stability studies under UV stress in simulated gastric fluid showed that BEO/QA-Ch-MCD was more able to protect polyphenols and limonene from degradation compared to free BEO or BEO complexed with MCD (BEO/MCD). The complexation and subsequent lyophilization allowed the transformation of a liquid into a solid dosage form capable of eliminating the unpleasant taste of the orally administered oil and rendering the solid suitable to produce powders, granules, tablets, etc. These solid oral dosage forms, as they come into contact with physiological fluids, could generate nanosized agglomerates able to increase the stability of their active contents and, consequently, their bioavailability.

6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232791

RESUMEN

Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded "jellyfishication" of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients.


Asunto(s)
Cnidarios , Escifozoos , Animales , Carbohidratos , Colágeno/metabolismo , Excipientes , Fibroblastos/metabolismo , Galactosamina , Galactosa , Glucosamina , Glucosa , Glicosaminoglicanos , Humanos , Peróxido de Hidrógeno , Ratones , Polisacáridos/farmacología , Escifozoos/metabolismo , Sulfatos , Cicatrización de Heridas
7.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36290770

RESUMEN

Comparative chemical analyses among peel and pulp essential oils (EOs) and methanolic extracts of four Citrus australasica varieties (Red, Collette, Pink Ice, and Yellow Sunshine), and the hybrid Faustrime, were performed using GC-MS and UHPLC-DAD-HR-Orbitrap/ESI-MS. Peel and pulp extracts were also analysed for their in vitro antioxidant activity on a Balb/3T3 clone A31 mouse embryo fibroblast cell line. The results of peel and pulp EOs were mainly characterised by monoterpenes and sesquiterpenes, respectively. All peels displayed a higher total phenol content (TPC) than pulps, and consequently a greater antioxidant activity. Collette peels and Pink Ice pulps showed the highest amount of identified flavonoids (e.g., luteolin, isosakuranetin, and poncirin derivatives). Collette and Red peels were rich in anthocyanins (delphinidin and petunidin glycosides), exhibiting the maximum protective activity against induced oxidative damage. In conclusion, finger lime fruits are good sources of health-promoting phytocomplexes, with the Red, Collette, and Pink Ice varieties being the most promising.

8.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956685

RESUMEN

Thiolated cyclodextrins are structurally simple mucoadhesive macromolecules, which are able to host drugs and increase their apparent water solubility, as well as interact with the mucus layer prolonging drug residence time on the site of absorption. The aim of this study was to synthesize through green microwave-assisted process a freely soluble thiolated 2-methyl-ß-cyclodextrin (MßCD-SH). Its inclusion complex properties with dexamethasone (Dex), a poor water soluble drug, and mucoadhesive characteristics were also determined. The product was deeply characterized through NMR spectroscopy (2D COSY, 2D HSQC, 1D/2D TOCSY, and 1D ROESY), showing a thiolation degree of 67%, a selective thiolation on the C6 residues and a monomeric structure. The association constant of MßCD and MßCD-SH with Dex resulted in 2514.3 ± 32.3 M-1 and 2147.0 ± 69.3 M-1, respectively, indicating that both CDs were able to host the drug. Microrheological analysis of mucin in the presence of MBCD-SH showed an increase of complex viscosity, G' and G″, due to disulphide bond formation. The cytotoxicity screening on fibroblast BALB/3T3 clone A31 cells indicated an IC50 of 27.7 mg/mL and 30.0 mg/mL, for MßCD and MßCD-SH, respectively. Finally, MßCD-SH was able to self-assemble in water into nanometric structures, both in the presence and absence of the complexed drug.

9.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897825

RESUMEN

Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Materiales Biocompatibles/uso terapéutico , Polímeros , Trasplante de Células Madre , Ingeniería de Tejidos , Cicatrización de Heridas
10.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269753

RESUMEN

The goal of this study was the design and evaluation of a thiolated cyclodextrin providing high drug solubilizing and mucoadhesive properties for ocular drug delivery. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was thiolated via a microwave-assisted method, resulting in a degree of thiolation of 33%. Mucoadhesive properties of thiolated HP-ß-CD (HP-ß-CD-SH) were determined via rheological measurements and ex vivo studies on isolated porcine cornea. Due to thiolation of HP-ß-CD, a 2-fold increase of mucus viscosity and a 1.4-fold increase in residence time on isolated corneal tissue were achieved. After instillation, the mean precorneal residence time and AUC of dexamethasone (DMS) eye drops were 4-fold and 11.7-fold enhanced by HP-ß-CD-SH, respectively. Furthermore, in the presence of HP-ß-CD-SH, a constant high level of DMS in aqueous humour between 30 and 150 min after administration was observed. These results suggest that HP-ß-CD-SH is an excellent excipient for ocular formulations of poorly soluble drugs in order to prolong their ocular residence time and bioavailability.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Córnea , Soluciones Oftálmicas , Solubilidad , Porcinos
11.
Pharmaceutics ; 13(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34959476

RESUMEN

Olive leaves extract (OLE) has been extensively studied as antioxidant and antibiotic and these characteristics make it particularly interesting for use on wounds. For this reason, the aim of this study was to introduce OLE in microparticles (MP) of hyaluronic acid (MPHA-OLE) or chitosan (MPCs-OLE) to obtain a spray patch for the treatment of wounds in anatomical areas that are difficult to protect with traditional patches. The MP were characterized for particle size and ability to protect OLE from degradation, to absorb water from wound exudate, to control OLE release from MP. The MPHA and MPCs medicated or not and mixtures of the two types in different proportions were studied in vitro on fibroblasts by the scratch wound healing assay. The MP size was always less than 5 µm, and therefore, suitable for a spray patch. The MPCs-OLE could slow down the release of OLE therefore only about 60% of the polyphenols contained in it were released after 4 h. Both MPHA and MPCs could accelerate wound healing. A 50% MPHA-OLE-50% MPCs-OLE blend was the most suitable for accelerating wound healing. The MPHA-OLE-MPCs-OLE blends studied in this work were shown to have the characteristics suitable for a spray patch, thus giving a second life to the waste products of olive growers.

12.
Int J Pharm ; 608: 121067, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34481012

RESUMEN

The structure solution of the δ-polymorph of indomethacin was obtained using three-dimensional electron diffraction. This form shows a significantly enhanced dissolution rate compared with the more common and better studied α- and γ-polymorphs, indicating better biopharmaceutical properties for medicinal applications. The structure was solved in non-centrosymmetric space group P21 and comprises two molecules in the asymmetric unit. Packing and molecule conformation closely resemble indomethacin methyl ester and indomethacin methanol solvate. Knowledge of the structure allowed the rational interpretation of spectroscopic IR and Raman data for δ-polymorph and a tentative interpretation for still unsolved indomethacin polymorphs. Finally, we observed a solid-solid transition from δ-polymorph to α-polymorph that can be driven by similarities in molecular conformation.


Asunto(s)
Antiinflamatorios no Esteroideos , Indometacina , Conformación Molecular , Solubilidad , Difracción de Rayos X
13.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299564

RESUMEN

BACKGROUND: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. METHODS: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. RESULTS: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). CONCLUSIONS: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.


Asunto(s)
Antioxidantes/farmacología , Células Endoteliales/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Solanum lycopersicum/química , Antioxidantes/química , Sequías , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Solanum lycopersicum/fisiología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Polifenoles/química , Estrés Fisiológico
14.
Microorganisms ; 9(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923269

RESUMEN

The co-occurrence of increasing rates of resistance to current antibiotics and the paucity of novel antibiotics pose major challenges for the treatment of bacterial infections. In this scenario, treatments targeting bacterial virulence have gained considerable interest as they are expected to exert a weaker selection for resistance than conventional antibiotics. In a previous study, we demonstrated that a low-molecular-weight quaternized chitosan derivative, named QAL, displays antibiofilm activity against the major pathogen Pseudomonas aeruginosa at subinhibitory concentrations. The aim of this study was to investigate whether QAL was able to inhibit the production of relevant virulence factors of P. aeruginosa. When tested in vitro at subinhibiting concentrations (0.31-0.62 mg/mL), QAL markedly reduced the production of pyocyanin, pyoverdin, proteases, and LasA, as well as inhibited the swarming motility of three out of four P. aeruginosa strains tested. Furthermore, quantitative reverse transcription PCR (qRT-PCR) analyses demonstrated that expression of lasI and rhlI, two QS-related genes, was highly downregulated in a representative P. aeruginosa strain. Confocal scanning laser microscopy analysis suggested that FITC-labelled QAL accumulates intracellularly following incubation with P. aeruginosa. In contrast, the reduced production of virulence factors was not evidenced when QAL was used as the main polymeric component of polyelectrolyte-based nanoparticles. Additionally, combination of sub-MIC concentrations of QAL and tobramycin significantly reduced biofilm formation of P. aeruginosa, likely due to a synergistic activity towards planktonic bacteria. Overall, the results obtained demonstrated an antivirulence activity of QAL, possibly due to polymer intracellular localization and QS-inhibition, and its ability to inhibit P. aeruginosa growth synergizing with tobramycin.

16.
Adv Colloid Interface Sci ; 288: 102342, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33444845

RESUMEN

Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ojo , Animales , Disponibilidad Biológica , Portadores de Fármacos , Excipientes , Humanos , Viscosidad
17.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260813

RESUMEN

The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band > 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8-5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients.

18.
Pharmaceutics ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374997

RESUMEN

Peptide oral administration is a hard goal to reach, especially if the brain is the target site. The purpose of the present study was to set up a vehicle apt to promote oral absorption of the neuropeptide dalargin (DAL), allowing it to cross the intestinal mucosal barrier, resist enzymatic degradation, and transport drugs to the brain after crossing the blood-brain barrier. Therefore, a chitosan quaternary ammonium derivative was synthesized and conjugated with methyl-ß-cyclodextrin to prepare DAL-medicated nanoparticles (DAL-NP). DAL-NP particle size was 227.7 nm, zeta potential +8.60 mV, encapsulation efficiency 89%. DAL-NP protected DAL from degradation by chymotrypsin or pancreatin and tripled DAL degradation time compared to non-encapsulated DAL. Use of DAL-NP was safe for either Caco-2 or bEnd.3 cells, with the latter selected as a blood-brain barrier model. DAL-NP could also cross either the Caco-2 or bEnd.3 monolayer by the transepithelial route. The results suggest a potential DAL-NP ability to transport to the brain a DAL dose fraction administered orally, although in vivo experiments will be needed to confirm the present data obtained in vitro.

19.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927715

RESUMEN

As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption.


Asunto(s)
Quitosano/análogos & derivados , Sistemas de Liberación de Medicamentos , Compuestos de Amonio Cuaternario/química
20.
Int J Pharm ; 587: 119698, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32736017

RESUMEN

Reduced molecular weight chitosan was quaternized with 2-chloro-N,N-diethylethylamine to obtain a water soluble derivative (N+-rCh). Methylated-ß-cyclodextrin (MCD), with 0.5 molar substitution, was covalently linked to N+-rCh through 1,6-hexamethylene diisocyanate spacer to give the derivatized ammonium chitosan N+-rCh-MCD. To shed light on the role of the cyclodextrin pendant in guiding binding interactions with amphiphilic active ingredients, corticosteroid prednisolone phosphate salt (PN) was considered. The deep inclusion of PN into cyclodextrin in PN/MCD model system was pointed out by analysis of 1H NMR complexation shifts, 1D ROESY spectra, and diffusion measurements (DOSY). By using proton selective relaxation rates measurements as investigation tool, the superior affinity of N+-rCh-MCD towards PN was demonstrated in comparison with parent ammonium chitosan N+-rCh.


Asunto(s)
Compuestos de Amonio , Quitosano , Ciclodextrinas , beta-Ciclodextrinas , Espectroscopía de Resonancia Magnética , Polímeros , Prednisolona/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...