Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982250

RESUMEN

Inflammatory conditions, including allergic asthma and conditions in which chronic low-grade inflammation is a risk factor, such as stress-related psychiatric disorders, are prevalent and are a significant cause of disability worldwide. Novel approaches for the prevention and treatment of these disorders are needed. One approach is the use of immunoregulatory microorganisms, such as Mycobacterium vaccae NCTC 11659, which have anti-inflammatory, immunoregulatory, and stress-resilience properties. However, little is known about how M. vaccae NCTC 11659 affects specific immune cell targets, including monocytes, which can traffic to peripheral organs and the central nervous system and differentiate into monocyte-derived macrophages that, in turn, can drive inflammation and neuroinflammation. In this study, we investigated the effects of M. vaccae NCTC 11659 and subsequent lipopolysaccharide (LPS) challenge on gene expression in human monocyte-derived macrophages. THP-1 monocytes were differentiated into macrophages, exposed to M. vaccae NCTC 11659 (0, 10, 30, 100, 300 µg/mL), then, 24 h later, challenged with LPS (0, 0.5, 2.5, 250 ng/mL), and assessed for gene expression 24 h following challenge with LPS. Exposure to M. vaccae NCTC 11659 prior to challenge with higher concentrations of LPS (250 ng/mL) polarized human monocyte-derived macrophages with decreased IL12A, IL12B, and IL23A expression relative to IL10 and TGFB1 mRNA expression. These data identify human monocyte-derived macrophages as a direct target of M. vaccae NCTC 11659 and support the development of M. vaccae NCTC 11659 as a potential intervention to prevent stress-induced inflammation and neuroinflammation implicated in the etiology and pathophysiology of inflammatory conditions and stress-related psychiatric disorders.


Asunto(s)
Lipopolisacáridos , Mycobacterium , Humanos , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Inflamación , Macrófagos
2.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203645

RESUMEN

Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.


Asunto(s)
Infecciones por Citomegalovirus , Microglía , Mycobacteriaceae , Animales , Ratones , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6 , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Antiinflamatorios
3.
Sci Rep ; 11(1): 6665, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758228

RESUMEN

Severe injuries are frequently accompanied by hemorrhagic shock and harbor an increased risk for complications. Local or systemic inflammation after trauma/hemorrhage may lead to a leaky intestinal epithelial barrier and subsequent translocation of gut microbiota, potentially worsening outcomes. To evaluate the extent with which trauma affects the gut microbiota composition, we performed a post hoc analysis of a murine model of polytrauma and hemorrhage. Four hours after injury, organs and plasma samples were collected, and the diversity and composition of the cecal microbiome were evaluated using 16S rRNA gene sequencing. Although cecal microbial alpha diversity and microbial community composition were not found to be different between experimental groups, norepinephrine support in shock animals resulted in increased alpha diversity, as indicated by higher numbers of distinct microbial features. We observed that the concentrations of proinflammatory mediators in plasma and intestinal tissue were associated with measures of microbial alpha and beta diversity and the presence of specific microbial drivers of inflammation, suggesting that the composition of the gut microbiome at the time of trauma, or shortly after trauma exposure, may play an important role in determining physiological outcomes. In conclusion, we found associations between measures of gut microbial alpha and beta diversity and the severity of systemic and local gut inflammation. Furthermore, our data suggest that four hours following injury is too early for development of global changes in the alpha diversity or community composition of the intestinal microbiome. Future investigations with increased temporal-spatial resolution are needed in order to fully elucidate the effects of trauma and shock on the gut microbiome, biological signatures of inflammation, and proximal and distal outcomes.


Asunto(s)
Biomarcadores , Microbioma Gastrointestinal , Inflamación/etiología , Inflamación/metabolismo , Traumatismo Múltiple/complicaciones , Choque/complicaciones , Animales , Biodiversidad , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inflamación/diagnóstico , Masculino , Metagenómica , Ratones , Traumatismo Múltiple/etiología , ARN Ribosómico 16S , Curva ROC , Choque/etiología , Aprendizaje Automático Supervisado
4.
Brain Behav Immun ; 91: 212-229, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011306

RESUMEN

Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.


Asunto(s)
Mycobacteriaceae , Mycobacterium , Animales , Ansiedad , Lípidos , Masculino , Ratas
5.
J Alzheimers Dis ; 78(3): 965-987, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33074227

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE: The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS: Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS: In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION: M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteínas del Líquido Cefalorraquídeo/metabolismo , Hipocampo/inmunología , Interleucina-4/inmunología , Metabolismo de los Lípidos/inmunología , Mycobacteriaceae/inmunología , Proteómica , Vacunación , Enfermedad de Alzheimer/inmunología , Animales , Hipocampo/metabolismo , Interleucina-4/genética , Proteínas , ARN Mensajero/metabolismo , Ratas
6.
Front Psychiatry ; 11: 353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457661

RESUMEN

The prevalence of stress-associated somatic and psychiatric disorders is increased in environments offering a narrow relative to a wide range of microbial exposure. Moreover, different animal and human studies suggest that an overreactive immune system not only accompanies stress-associated disorders, but might even be causally involved in their pathogenesis. In support of this hypothesis, we recently showed that urban upbringing in the absence of daily contact with pets, compared to rural upbringing in the presence of daily contact with farm animals, is associated with a more pronounced immune activation following acute psychosocial stressor exposure induced by the Trier Social Stress Test (TSST). Here we employed 16S rRNA gene sequencing to test whether this difference in TSST-induced immune activation between urban upbringing in the absence of daily contact with pets (n = 20) compared with rural upbringing in the presence of daily contact with farm animals (n = 20) is associated with differences in the composition of the salivary microbiome. Although we did not detect any differences in alpha or beta diversity measures of the salivary microbiome between the two experimental groups, statistical analysis revealed that the salivary microbial beta diversity was significantly higher in participants with absolutely no animal contact (n = 5, urban participants) until the age of 15 compared to all other participants (n = 35) reporting either daily contact with farm animals (n = 20, rural participants) or occasional pet contact (n = 15, urban participants). Interestingly, when comparing these urban participants with absolutely no pet contact to the remaining urban participants with occasional pet contact, the former also displayed a significantly higher immune, but not hypothalamic-pituitary-adrenal (HPA) axis or sympathetic nervous system (SNS) activation, following TSST exposure. In summary, we conclude that only urban upbringing with absolutely no animal contact had long-lasting effects on the composition of the salivary microbiome and potentiates the negative consequences of urban upbringing on stress-induced immune activation.

7.
Biochem Pharmacol ; 159: 64-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414940

RESUMEN

BACKGROUND AND PURPOSE: Chronic nicotine exposure upregulates α4ß2* nicotinic acetylcholine receptors (nAChRs) in the brain. The goal of this study was to examine the role of three serine residues in the large cytoplasmic loop of the α4 subunit on α4ß2* upregulation in neurons. EXPERIMENTAL APPROACH: Serine residues S336, S470 and S530 in mouse α4 were mutated to alanine and then re-expressed in primary neurons from cortex, hippocampus and subcortex of α4 KO mice. Mutant and wild type α4 expressing neurons were treated with nicotine (0.1, 1 and 10 µM) and assessed for α4ß2* upregulation. KEY RESULTS: α4ß2* nAChRs expressing S336A or S470A mutants were deficient at cell surface upregulation in both subcortex and hippocampal neurons. S530A α4ß2* mutants exhibited aberrant surface upregulation in subcortical neurons. None of the mutants affected surface upregulation in cortical neurons or upregulation of total α4ß2* binding sites in any region. Further, dense domains or clusters of α4ß2* nAChRs were observed in the neuronal surface. The impact of nicotine exposure on the intensity, area, and density of these clusters was dependent upon individual mutations. CONCLUSIONS AND IMPLICATIONS: Effects of α4 nAChR mutants on surface upregulation varied among brain regions, suggesting that the cellular mechanism of α4ß2* upregulation is complex and involves cellular identity. We also report for the first time that α4ß2* nAChRs form clusters on the neuronal surface and that nicotine treatment alters the characteristics of the clusters in an α4 mutant-dependent manner. This finding adds a previously unknown layer of complexity to the effects of nicotine on α4ß2* expression and function.


Asunto(s)
Neuronas/metabolismo , Nicotina/toxicidad , Receptores Nicotínicos/metabolismo , Serina/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Mutación , Neuronas/efectos de los fármacos , Piridinas/metabolismo , Receptores Nicotínicos/genética , Serina/genética , Regulación hacia Arriba/efectos de los fármacos
8.
Am J Respir Cell Mol Biol ; 57(3): 324-333, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28398760

RESUMEN

Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, ß2, or ß4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-ß. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.


Asunto(s)
Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Nicotina/farmacología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Humanos , Macrófagos Alveolares/efectos de los fármacos , FN-kappa B/metabolismo , Antagonistas Nicotínicos/farmacología , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Fumar , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
9.
Pharmacol Res Perspect ; 3(2): e00111, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25729578

RESUMEN

The expression of high-affinity α4ß2* nicotinic acetylcholine receptors (nAChR) increases following chronic exposure to nicotinic agonists. While, nAChR antagonists can also produce upregulation, these changes are often less pronounced than achieved with agonists. It is unknown if nAChR agonists and antagonists induce receptor upregulation by the same mechanisms. In this study, primary neuronal cultures prepared from cerebral cortex, hippocampus, diencephalon, and midbrain/hindbrain of C57BL/6J mouse embryos were treated chronically with nicotine (agonist), mecamylamine (noncompetitive antagonist) or dihydro-ß-erythroidine (competitive antagonist) or the combination of nicotine with each antagonist. The distribution of intracellular and surface [(125)I]epibatidine-binding sites were subsequently measured. Treatment with 1 µmol/L nicotine upregulated intracellular and cell surface [(125)I]epibatidine binding after 96 h. Chronic dihydro-ß-erythroidine (10 µmol/L) treatment also increased [(125)I]epibatidine binding on the cell surface; however, mecamylamine was ineffective in upregulating receptors by itself. The combination of 1 µmol/L nicotine plus 10 µmol/L mecamylamine elicited a significantly higher upregulation than that achieved by treatment with nicotine alone due to an increase of [(125)I]epibatidine binding on the cell surface. This synergistic effect of mecamylamine and nicotine was found in neuronal cultures from all four brain regions. Chronic treatment with nicotine concentrations as low as 10 nmol/L produced upregulation of [(125)I]epibatidine binding. However, the effect of mecamylamine was observed only after coincubation with nicotine concentrations equal to or greater than 100 nmol/L. Vesicular trafficking was required for both nicotine and nicotine plus mecamylamine-induced upregulation. Results presented here support the idea of multiple mechanisms for nAChR upregulation.

10.
Brain Res ; 1529: 1-15, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23872218

RESUMEN

The cluster of human neuronal nicotinic receptor genes (CHRNA5/A3/B4) (15q25.1) has been associated with a variety of smoking and drug-related behaviors, as well as risk for lung cancer. CHRNA3/B4 intergenic single nucleotide polymorphisms (SNPs) rs1948 and rs8023462 have been associated with early initiation of alcohol and tobacco use, and rs6495309 has been associated with nicotine dependence and risk for lung cancer. An in vitro luciferase expression assay was used to determine whether these SNPs and surrounding sequences contribute to differences in gene expression using cell lines either expressing proteins characteristic of neuronal tissue or derived from lung cancers. Electrophoretic mobility shift assays (EMSAs) were performed to investigate whether nuclear proteins from these cell lines bind SNP alleles differentially. Results from expression assays were dependent on cell culture type and haplotype. EMSAs indicated that rs8023462 and rs6495309 bind nuclear proteins in an allele-specific way. Additionally, GATA transcription factors appeared to bind rs8023462 only when the minor/risk allele was present. Much work has been done to describe the rat Chrnb4/a3 intergenic region, but few studies have examined the human intergenic region effects on expression; therefore, these studies greatly aid human genetic research as it relates to observed nicotine phenotypes, lung cancer risk and potential underlying genetic mechanisms. Data from these experiments support the hypothesis that SNPs associated with human addiction-related phenotypes and lung cancer risk can affect gene expression, and are potential therapeutic targets. Additionally, this is the first evidence that rs8023462 interacts with GATA transcription factors to influence gene expression.


Asunto(s)
ADN Intergénico/fisiología , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Receptores Nicotínicos/genética , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Transfección
11.
J Pharmacol Exp Ther ; 342(2): 245-54, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22532626

RESUMEN

Chronic nicotine produces up-regulation of α4ß2* nicotinic acetylcholine receptors (nAChRs) (* denotes that an additional subunit may be part of the receptor). However, the extent of up-regulation to persistent ligand exposure varies across brain regions. The aim of this work was to study the cellular distribution and function of nAChRs after chronic nicotine treatment in primary cultures of mouse brain neurons. Initially, high-affinity [(125)I]epibatidine binding to cell membrane homogenates from primary neuronal cultures obtained from diencephalon and hippocampus of C57BL/6J mouse embryos (embryonic days 16-18) was measured. An increase in α4ß2*-nAChR binding sites was observed in hippocampus, but not in diencephalon, after 24 h of treatment with 1 µM nicotine. However, a nicotine dose-dependent up-regulation of approximately 3.5- and 0.4-fold in hippocampus and diencephalon, respectively, was found after 96 h of nicotine treatment. A significant fraction of total [(125)I]epibatidine binding sites in both hippocampus (45%) and diencephalon (65%) was located on the cell surface. Chronic nicotine (96 h) up-regulated both intracellular and surface binding in both brain regions without changing the proportion of those binding sites compared with control neurons. The increase in surface binding was not accompanied by an increase in nicotine-stimulated Ca(2+) influx, suggesting persistent desensitization or inactivation of receptors at the plasma membrane occurred. Given the differences observed between hippocampus and diencephalon neurons exposed to nicotine, multiple mechanisms may play a role in the regulation of nAChR expression and function.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nicotina/farmacología , Piridinas/metabolismo , Receptores Nicotínicos/metabolismo , Alquilación/efectos de los fármacos , Animales , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Diencéfalo/efectos de los fármacos , Diencéfalo/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Radioisótopos de Yodo/análisis , Ratones , Ratones Endogámicos C57BL , Piridinas/farmacología , Regulación hacia Arriba/efectos de los fármacos
12.
Free Radic Biol Med ; 36(11): 1393-402, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15135175

RESUMEN

Oxidative stress has been demonstrated to produce modifications in several intracellular proteins that lead to alterations in their activities. Alzheimer's disease is related to an increase of oxidative stress markers, which may be an early event in the progression of the disease and neurofibrillary tangles formation. Abnormal phosphorylation of tau has been implicated in the etiopathogenesis of Alzheimer's disease. By using phospho-specific antibodies, we analyzed the changes in tau phosphorylation patterns after treatment of rat hippocampal and SHSY5Y human neuroblastoma cells with H2O2. We found that tau isoforms were hypophosphorylated at the Tau1 epitope after 2 h in the presence of H2O2. The decrease in the phosphorylation levels of tau protein were prevented by pretreatment with N-acetyl-L-cysteine. These changes were shown to depend on the activity of the cdk5/p35 complex, since a 3-fold increase in substrate phosphorylation and a 2-fold increase for the complex association were observed. Also, a decrease in the amount of inhibitor-2 bound to phosphatase PP1 was found in SHSY5Y cells under oxidative stress conditions. This decrease of inhibitor-2 bound to PP1 is due to an increased phosphorylation of the inhibitor-2 protein, thus leading to increased PP1 activity. Therefore, we propose that oxidative stress-induced activation of cdk5 leads to inhibitor-2 phosphorylation, relieving its inhibitory effect on PP1.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina , Técnica del Anticuerpo Fluorescente , Humanos , Fosforilación , Pruebas de Precipitina , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...