Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 35(3): 487-497, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38329320

RESUMEN

Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.


Asunto(s)
Péptido Hidrolasas , Espectrometría de Masas en Tándem , Humanos , Proteómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Colagenasas , Biomarcadores
2.
Adv Cancer Res ; 154: 15-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35459468

RESUMEN

Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.


Asunto(s)
Colágeno , Neoplasias , Microambiente Tumoral , Biomarcadores de Tumor , Proteínas de la Matriz Extracelular , Humanos , Neoplasias/diagnóstico
3.
Metabolites ; 12(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35323675

RESUMEN

Point-of-care screening tools are essential to expedite patient care and decrease reliance on slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen increased attention in recent years as a potential non-invasive diagnostic procedure. This work explores the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry (MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised machine learning (ML) classification algorithms are trained and evaluated on the extracted feature set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while marked progress is also made in identifying specific strains of bacteria. This study presents a new approach for the identification of pathogens from VOC signatures collected using SPME and ambient ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.

4.
PLoS Negl Trop Dis ; 15(9): e0009360, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34591844

RESUMEN

BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%). CONCLUSIONS: The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Medicamentos Falsificados/análisis , Evaluación Preclínica de Medicamentos/instrumentación , Medicamentos de Baja Calidad/análisis , Evaluación Preclínica de Medicamentos/métodos , Dispositivos Laboratorio en un Chip , Control de Calidad , Sensibilidad y Especificidad
5.
J Am Soc Mass Spectrom ; 32(6): 1388-1392, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33970637

RESUMEN

This Communication describes a new thermal desorption/pyrolysis vacuum-assisted plasma ionization (pyro-VaPI) ion source coupled to ion mobility-mass spectrometry (IM-MS) for insoluble polymer analysis. Pyro-VaPI combines a pyrolysis device, soft ambient plasma ionization, IM, and MS into a single platform for polymer analysis with minimal sample preparation. Nylons, a widely used and well-studied thermoplastic, were chosen to evaluate the pyro-VaPI performance. Six different nylon polymers were studied and characterized. With the application of IM-MS, two different isobars for the protonated cyclic dimers of 6-6, 6-9, 6-10, and 6-12 nylon and two isobars for the cyclic tetramer of nylon-6 were detected at 200 °C. These isobars were observed at different heating times, with the species drifting faster in the IM cell appearing several minutes after the slower drifting species. To the best of our knowledge, these isobaric dimers and tetramers have not been previously reported, indicating that pyro-VaPI IM-MS is a useful tool for the structural characterization of heated or pyrolyzed polymers.

6.
J Am Soc Mass Spectrom ; 29(4): 635-639, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29404968

RESUMEN

In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. Graphical Abstract ᅟ.

7.
J Am Soc Mass Spectrom ; 27(7): 1203-10, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27080004

RESUMEN

Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 µm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...