Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atmos Environ (1994) ; 3102023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37901719

RESUMEN

Low-cost air quality monitors are growing in popularity among both researchers and community members to understand variability in pollutant concentrations. Several studies have produced calibration approaches for these sensors for ambient air. These calibrations have been shown to depend primarily on relative humidity, particle size distribution, and particle composition, which may be different in indoor environments. However, despite the fact that most people spend the majority of their time indoors, little is known about the accuracy of commonly used devices indoors. This stems from the fact that calibration data for sensors operating in indoor environments are rare. In this study, we sought to evaluate the accuracy of the raw data from PurpleAir fine particulate matter monitors and for published calibration approaches that vary in complexity, ranging from simply applying linear corrections to those requiring co-locating a filter sample for correction with a gravimetric concentration during a baseline visit. Our data includes PurpleAir devices that were co-located in each home with a gravimetric sample for 1-week periods (265 samples from 151 homes). Weekly-averaged gravimetric concentrations ranged between the limit of detection (3 µg/m3) and 330 µg/m3. We found a strong correlation between the PurpleAir monitor and the gravimetric concentration (R>0.91) using internal calibrations provided by the manufacturer. However, the PurpleAir data substantially overestimated indoor concentrations compared to the gravimetric concentration (mean bias error ≥ 23.6 µg/m3 using internal calibrations provided by the manufacturer). Calibrations based on ambient air data maintained high correlations (R ≥ 0.92) and substantially reduced bias (e.g. mean bias error = 10.1 µg/m3 using a US-wide calibration approach). Using a gravimetric sample from a baseline visit to calibrate data for later visits led to an improvement over the internal calibrations, but performed worse than the simpler calibration approaches based on ambient air pollution data. Furthermore, calibrations based on ambient air pollution data performed best when weekly-averaged concentrations did not exceed 30 µg/m3, likely because the majority of the data used to train these models were below this concentration.

2.
Proc Natl Acad Sci U S A ; 117(7): 3427-3432, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015109

RESUMEN

High levels of ultrafine particles (UFPs; diameter of less than 50 nm) are frequently produced from new particle formation under urban conditions, with profound implications on human health, weather, and climate. However, the fundamental mechanisms of new particle formation remain elusive, and few experimental studies have realistically replicated the relevant atmospheric conditions. Previous experimental studies simulated oxidation of one compound or a mixture of a few compounds, and extrapolation of the laboratory results to chemically complex air was uncertain. Here, we show striking formation of UFPs in urban air from combining ambient and chamber measurements. By capturing the ambient conditions (i.e., temperature, relative humidity, sunlight, and the types and abundances of chemical species), we elucidate the roles of existing particles, photochemistry, and synergy of multipollutants in new particle formation. Aerosol nucleation in urban air is limited by existing particles but negligibly by nitrogen oxides. Photooxidation of vehicular exhaust yields abundant precursors, and organics, rather than sulfuric acid or base species, dominate formation of UFPs under urban conditions. Recognition of this source of UFPs is essential to assessing their impacts and developing mitigation policies. Our results imply that reduction of primary particles or removal of existing particles without simultaneously limiting organics from automobile emissions is ineffective and can even exacerbate this problem.


Asunto(s)
Material Particulado/química , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/química , Oxidación-Reducción , Tamaño de la Partícula , Temperatura
3.
Proc Natl Acad Sci U S A ; 116(24): 11590-11595, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31138695

RESUMEN

Exposure to fine particulate matter (PM) during pregnancy is associated with high risks of birth defects/fatality and adverse long-term postnatal health. However, limited mechanistic data are available to assess the detailed impacts of prenatal PM exposure. Here we evaluate fine PM exposure during pregnancy on prenatal/postnatal organogenesis in offspring and in predisposing metabolic syndrome for adult life. Between days 0 and 18 of gestation, two groups of adult female rats (n = 10 for each) were placed in a dual-exposure chamber device, one with clean ambient air (∼3 µg·m-3) and the other with ambient air in the presence of 100 to 200 µg·m-3 of ultrafine aerosols of ammonium sulfate. At birth (postnatal day 0, PND0), four males and four females were selected randomly from each litter to be nursed by dams, whereas tissues were collected from the remaining pups. At PND21, tissues were collected from two males and two females, whereas the remaining pups were fed either a high- or low-fat diet until PND105, when tissues were obtained for biochemical and physiological analyses. Maternal exposure to fine PM increased stillbirths; reduced gestation length and birth weight; increased concentrations of glucose and free fatty acids in plasma; enhanced lipid accumulation in the liver; and decreased endothelium-dependent relaxation of aorta. This lead to altered organogenesis and predisposed progeny to long-term metabolic defects in an age-, organ-, and sex-specific manner. Our results highlight the necessity to develop therapeutic strategies to remedy adverse health effects of maternal PM exposure on conceptus/postnatal growth and development.


Asunto(s)
Exposición Materna/efectos adversos , Síndrome Metabólico/inducido químicamente , Organogénesis/efectos de los fármacos , Material Particulado/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Contaminación del Aire/efectos adversos , Animales , Peso al Nacer/efectos de los fármacos , Susceptibilidad a Enfermedades/sangre , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/patología , Exposición a Riesgos Ambientales/efectos adversos , Ácidos Grasos/sangre , Femenino , Glucosa/metabolismo , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Organogénesis/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Proc Natl Acad Sci U S A ; 116(9): 3443-3448, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808738

RESUMEN

Early life exposure to fine particulate matter (PM) in air is associated with infant respiratory disease and childhood asthma, but limited epidemiological data exist concerning the impacts of ultrafine particles (UFPs) on the etiology of childhood respiratory disease. Specifically, the role of UFPs in amplifying Th2- and/or Th17-driven inflammation (asthma promotion) or suppressing effector T cells (increased susceptibility to respiratory infection) remains unclear. Using a mouse model of in utero UFP exposure, we determined early immunological responses to house dust mite (HDM) allergen in offspring challenged from 0 to 4 wk of age. Two mice strains were exposed throughout gestation: C57BL/6 (sensitive to oxidative stress) and BALB/C (sensitive to allergen exposure). Offspring exposed to UFPs in utero exhibited reduced inflammatory response to HDM. Compared with filtered air (FA)-exposed/HDM-challenged mice, UFP-exposed offspring had lower white blood cell counts in bronchoalveolar lavage fluid and less pronounced peribronchiolar inflammation in both strains, albeit more apparent in C57BL/6 mice. In the C57BL/6 strain, offspring exposed in utero to FA and challenged with HDM exhibited a robust response in inflammatory cytokines IL-13 and Il-17. In contrast, this response was lost in offspring exposed in utero to UFPs. Circulating IL-10 was significantly up-regulated in C57BL/6 offspring exposed to UFPs, suggesting increased regulatory T cell expression and suppressed Th2/Th17 response. Our results reveal that in utero UFP exposure at a level close to the WHO recommended PM guideline suppresses an early immune response to HDM allergen, likely predisposing neonates to respiratory infection and altering long-term pulmonary health.


Asunto(s)
Asma/inmunología , Hipersensibilidad/inmunología , Material Particulado/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inmunología , Alérgenos/química , Alérgenos/toxicidad , Animales , Asma/inducido químicamente , Asma/genética , Asma/patología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/genética , Femenino , Hipersensibilidad/genética , Hipersensibilidad/patología , Terapia de Inmunosupresión , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Pyroglyphidae/química , Células Th17/inmunología , Células Th2/inmunología
5.
Environ Sci Technol ; 53(1): 117-126, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30499298

RESUMEN

Brown Carbon (BrC) aerosols scatter and absorb solar radiation, directly affecting the Earth's radiative budget. However, considerable uncertainty exists concerning the chemical mechanism leading to BrC formation and their optical properties. In this work, BrC particles were prepared from mixtures of small α-dicarbonyls (glyoxal and methylglyoxal) and amines (methylamine, dimethylamine, and trimethylamine). The absorption and scattering of BrC particles were measured using a photoacoustic extinctometer (405 and 532 nm), and the chemical composition of the α-dicarbonyl-amine mixtures was analyzed using orbitrap-mass spectrometry and thermal desorption-ion drift-chemical ionization mass spectrometry. The single scattering albedo for methylglyoxal-amine mixtures is smaller than that of glyoxal-amine mixtures and increases with the methyl substitution of amines. The mass absorption cross-section for methylglyoxal-amine mixtures is two times higher at 405 nm wavelength than that at 532 nm wavelength. The derived refractive indexes at the 405 nm wavelength are 1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. Composition analysis in the α-dicarbonyl-amine mixtures reveals N-heterocycles as the dominant products, which are formed via multiple steps involving nucleophilic attack, steric hindrance, and dipole-dipole interaction between α-dicarbonyls and amines. BrC aerosols, if formed from the particle-phase reaction of methylglyoxal with methylamine, likely contribute to atmospheric warming.


Asunto(s)
Aminas , Carbono , Aerosoles , Glioxal , Piruvaldehído
6.
Environ Sci Technol ; 50(16): 8605-12, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27384756

RESUMEN

Laboratory experiments are conducted to investigate aging of size-classified black carbon (BC) particles from OH-initiated oxidation of m-xylene. The variations in the particle size, mass, effective density, morphology, optical properties, hygroscopicity, and activation as cloud condensation nuclei (CCN) are simultaneously measured by a suite of aerosol instruments, when BC particles are exposed to the oxidation products of the OH-m-xylene reactions. The BC aging is governed by the coating thickness (Δrve), which is correlated to the reaction time and initial concentrations of m-xylene and NOx. For an initial diameter of 100 nm and Δrve = 44 nm, the particle size and mass increase by a factor of 1.5 and 10.4, respectively, and the effective density increases from 0.43 to 1.45 g cm(-3) due to organic coating and collapsing of the BC core. The BC particles are fully converted from a highly fractal to nearly spherical morphology for Δrve = 30 nm. The scattering, absorption, and single scattering albedo of BC particles are enhanced accordingly with organic coating. The critical supersaturation for CCN activation is reduced to 0.1% with Δrve = 44 nm. The results imply that the oxidation of m-xylene exhibits larger impacts in modifying the BC particle properties than those for the OH-initiated oxidation of isoprene and toluene.


Asunto(s)
Aerosoles , Carbono/química , Hollín/química , Xilenos/química , Oxidación-Reducción , Tamaño de la Partícula
7.
Chem Rev ; 115(10): 3803-55, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25942499
9.
Proc Natl Acad Sci U S A ; 111(49): 17373-8, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422462

RESUMEN

As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...