Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 3259-3271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293240

RESUMEN

The Envelope (E) protein of SARS-CoV-2 plays a key role in virus maturation, assembly, and virulence mechanisms. The E protein is characterized by the presence of a PDZ-binding motif (PBM) at its C-terminus that allows it to interact with several PDZ-containing proteins in the intracellular environment. One of the main binding partners of the SARS-CoV-2 E protein is the PDZ2 domain of ZO1, a protein with a crucial role in the formation of epithelial and endothelial tight junctions (TJs). In this work, through a combination of analytical ultracentrifugation analysis and equilibrium and kinetic folding experiments, we show that ZO1-PDZ2 domain is able to fold in a monomeric state, an alternative form to the dimeric conformation that is reported to be functional in the cell for TJs assembly. Importantly, surface plasmon resonance (SPR) data indicate that the PDZ2 monomer is fully functional and capable of binding the C-terminal portion of the E protein of SARS-CoV-2, with a measured affinity in the micromolar range. Moreover, we present a detailed computational analysis of the complex between the C-terminal portion of E protein with ZO1-PDZ2, both in its monomeric conformation (computed as a high confidence AlphaFold2 model) and dimeric conformation (obtained from the Protein Data Bank), by using both polarizable and nonpolarizable simulations. Together, our results indicate both the monomeric and dimeric states of PDZ2 to be functional partners of the E protein, with similar binding mechanisms, and provide mechanistic and structural information about a fundamental interaction required for the replication of SARS-CoV-2.

2.
ACS Chem Biol ; 17(8): 2099-2108, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35797699

RESUMEN

We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64. Accordingly, resonance Raman spectroscopy highlighted a more open distal pocket in the CO complex that, in agreement with MD simulations, likely involves His64 swinging inward and outward of the distal heme pocket. Ngb CDless displays a more rigid overall structure with respect to the wild type, abolishing the structural dynamics of the CDloop-D-helix hypothesized to mediate its signaling role, and it retains ligand binding control by distal His64. In conclusion, this mutant may represent a tool to investigate the involvement of CDloop-D-helix in neuroprotective signaling in a cellular or animal model.


Asunto(s)
Neuroglobina/química , Animales , Hemo/química , Ligandos , Ratones , Neuroglobina/metabolismo
3.
FEBS J ; 285(17): 3238-3253, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30035852

RESUMEN

Cancer cells reprogramme one-carbon metabolism (OCM) to sustain growth and proliferation. Depending on cell demands, serine hydroxymethyltransferase (SHMT) dynamically changes the fluxes of OCM by reversibly converting serine and tetrahydrofolate (THF) into 5,10-methylene-THF and glycine. SHMT is a tetrameric enzyme that mainly exists in three isoforms; two localize in the cytosol (SHMT1/SHMT2α) and one (SHMT2) in the mitochondria. Both the cytosolic isoforms can also translocate to the nucleus to sustain de novo thymidylate synthesis and support cell proliferation. Finally, the expression levels of the different isoforms are regulated to a certain extent by a yet unknown crosstalk mechanism. We have designed and fully characterized a set of three SHMT1 mutants, which uncouple the oligomeric state of the enzyme from its catalytic activity. We have then investigated the effects of the mutations on SHMT1 nuclear localization, cell viability and crosstalk in lung cancer cells (A549; H1299). Our data reveal that in these cell lines de novo thymidylate synthesis requires SHMT1 to be active, regardless of its oligomeric state. We have also confirmed that the crosstalk between the cytosolic and mitochondrial SHMT actually takes place and regulates the expression of the two isoforms. Apparently, the crosstalk mechanism is independent from the oligomeric state and the catalytic activity of SHMT1. DATABASE: Structural data are available in the PDB under the accession number 6FL5.


Asunto(s)
Núcleo Celular/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Mutantes/metabolismo , Serina/metabolismo , Timidina Monofosfato/metabolismo , Proliferación Celular , Cristalografía por Rayos X , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Conformación Proteica , Isoformas de Proteínas , Células Tumorales Cultivadas
4.
Biochim Biophys Acta Gen Subj ; 1862(10): 2183-2190, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30025857

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) are a superfamily of evolutionary conserved cyclic nucleotides (cAMP/cGMP) hydrolysing enzymes, components of transduction pathways regulating crucial aspects of cell life. PDE5, one of these families, is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Despite its medical relevance, PDE5 macromolecular structure has only been solved for the isolated regulatory and catalytic domains. The definition of the quaternary structure of the full length PDE5 (MmPDE5A1), produced in large amounts in the yeast Kluyveromyces lactis, could greatly enhance the knowledge on its assembly/allosteric regulation and the development of new inhibitors for clinical-therapeutic applications. METHODS: Small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC), native polyacrylamide gel electrophoresis (PAGE) and western blot (WB) were used to assess the assembly of PDE5A1. RESULTS: The full length MmPDE5A1 isoform is a mixture of dimers and tetramers in solution. We also report data showing that dimers and tetramers also coexist in vivo in platelets, blood components naturally containing high levels of PDE5. CONCLUSIONS: This is the first time that structural studies on the full length protein evidenced the assembly of PDE5 in tetramers in addition to the expected dimers. GENERAL SIGNIFICANCE: The assembly of PDE5 in tetramers in platelets, beside the dimers, opens the possibility to alternative assembly/allosteric regulation of this enzyme, as component of large signaling complexes, in all cellular districts in which PDE5 is present.


Asunto(s)
Plaquetas/enzimología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Regulación Alostérica , Animales , Dominio Catalítico , Ratas , Dispersión del Ángulo Pequeño
5.
Protein Sci ; 27(3): 725-737, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277937

RESUMEN

The dual-specificity activity of the homeodomain interacting protein kinase 2 (HIPK2) is regulated by cis-auto-phosphorylation of tyrosine 361 (Y361) on the activation loop. Inhibition of this process or substitution of Y361 with nonphosphorylatable amino acid residues result in aberrant HIPK2 forms that show altered functionalities, pathological-like cellular relocalization, and accumulation into cytoplasmic aggresomes. Here, we report an in vitro characterization of wild type HIPK2 kinase domain and of two mutants, one at the regulating Y361 (Y361F, mimicking a form of HIPK2 lacking Y361 phosphorylation) and another at the catalytic lysine 228 (K228A, inactivating the enzyme). Gel filtration and thermal denaturation analyzes along with equilibrium binding experiments and kinase assays performed in the presence or absence of ATP-competitors were performed. The effects induced by mutations on overall stability, oligomerization and activity support the existence of different conformations of the kinase domain linked to Y361 phosphorylation. In addition, our in vitro data are consistent with both the cross-talk between the catalytic site and the activation loop of HIPK2 and the aberrant activities and accumulation previously reported for the Y361 nonphosphorylated HIPK2 in mammalian cells.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Tirosina/metabolismo , Animales , Proteínas Portadoras/genética , Dominio Catalítico , Activación Enzimática , Estabilidad de Enzimas , Ratones , Modelos Moleculares , Mutación , Fosforilación , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Tirosina/genética
6.
FEBS J ; 284(18): 2981-2999, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28704585

RESUMEN

We determined the crystal structure of Thr1, the self-standing adenylation domain involved in the nonribosomal-like biosynthesis of free 4-chlorothreonine in Streptomyces sp. OH-5093. Thr1 shows two monomers in the crystallographic asymmetric unit with different relative orientations of the C- and N-terminal subdomains both in the presence of substrates and in the unliganded form. Cocrystallization with substrates, adenosine 5'-triphosphate and l-threonine, yielded one monomer containing the two substrates and the other in complex with l-threonine adenylate, locked in a postadenylation state. Steady-state kinetics showed that Thr1 activates l-Thr and its stereoisomers, as well as d-Ala, l- and d-Ser, albeit with lower efficiency. Modeling of these substrates in the active site highlighted the molecular bases of substrate discrimination. This work provides the first crystal structure of a threonine-activating adenylation enzyme, a contribution to the studies on conformational rearrangement in adenylation domains and on substrate recognition in nonribosomal biosynthesis. DATABASE: Structural data are available in the Protein Data Bank under the accession number 5N9W and 5N9X.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Péptido Sintasas/química , Streptomyces/química , Treonina/análogos & derivados , Treonina/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Streptomyces/enzimología , Especificidad por Sustrato , Treonina/biosíntesis , Treonina/metabolismo
7.
Protein J ; 36(3): 174-185, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345116

RESUMEN

Human ornithine δ-aminotransferase (hOAT) (EC 2.6.1.13) is a mitochondrial pyridoxal 5'-phosphate (PLP)-dependent aminotransferase whose deficit is associated with gyrate atrophy, a rare autosomal recessive disorder causing progressive blindness and chorioretinal degeneration. Here, both the apo- and holo-form of recombinant hOAT were characterized by means of spectroscopic, kinetic, chromatographic and computational techniques. The results indicate that apo and holo-hOAT (a) show a similar tertiary structure, even if apo displays a more pronounced exposure of hydrophobic patches, (b) exhibit a tetrameric structure with a tetramer-dimer equilibrium dissociation constant about fivefold higher for the apoform with respect to the holoform, and (c) have apparent Tm values of 46 and 67 °C, respectively. Moreover, unlike holo-hOAT, apo-hOAT is prone to unfolding and aggregation under physiological conditions. We also identified Arg217 as an important hot-spot at the dimer-dimer interface of hOAT and demonstrated that the artificial dimeric variant R217A exhibits spectroscopic properties, Tm values and catalytic features similar to those of the tetrameric species. This finding indicates that the catalytic unit of hOAT is the dimer. However, under physiological conditions the apo-tetramer is slightly less prone to unfolding and aggregation than the apo-dimer. The possible implications of the data for the intracellular stability and regulation of hOAT are discussed.


Asunto(s)
Ornitina-Oxo-Ácido Transaminasa/química , Multimerización de Proteína , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Estabilidad de Enzimas , Holoenzimas/química , Holoenzimas/genética , Calor , Humanos , Mutación Missense , Ornitina-Oxo-Ácido Transaminasa/genética , Estructura Cuaternaria de Proteína
8.
Biochim Biophys Acta ; 1840(1): 535-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24128931

RESUMEN

BACKGROUND: In Gram-negative bacteria the ZnuABC transporter ensures adequate zinc import in Zn(II)-poor environments, like those encountered by pathogens within the infected host. Recently, the metal-binding protein ZinT was suggested to operate as an accessory component of ZnuABC in periplasmic zinc recruitment. Since ZinT is known to form a ZinT-ZnuA complex in the presence of Zn(II) it was proposed to transfer Zn(II) to ZnuA. The present work was undertaken to test this claim. METHODS: ZinT and its structural relationship with ZnuA have been characterized by multiple biophysical techniques (X-ray crystallography, SAXS, analytical ultracentrifugation, fluorescence spectroscopy). RESULTS: The metal-free and metal-bound crystal structures of Salmonella enterica ZinT show one Zn(II) binding site and limited structural changes upon metal removal. Spectroscopic titrations with Zn(II) yield a KD value of 22±2nM for ZinT, while those with ZnuA point to one high affinity (KD<20nM) and one low affinity Zn(II) binding site (KD in the micromolar range). Sedimentation velocity experiments established that Zn(II)-bound ZinT interacts with ZnuA, whereas apo-ZinT does not. The model of the ZinT-ZnuA complex derived from small angle X-ray scattering experiments points to a disposition that favors metal transfer as the metal binding cavities of the two proteins face each other. CONCLUSIONS: ZinT acts as a Zn(II)-buffering protein that delivers Zn(II) to ZnuA. GENERAL SIGNIFICANCE: Knowledge of the ZinT-ZnuA relationship is crucial for understanding bacterial Zn(II) uptake.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Periplasma/metabolismo , Salmonella enterica/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Ultracentrifugación , Difracción de Rayos X
9.
Nanoscale ; 5(24): 12278-85, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24150593

RESUMEN

A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Ferritinas/química , Inmunoconjugados/administración & dosificación , Melanoma/tratamiento farmacológico , Nanopartículas/química , Animales , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Ferritinas/metabolismo , Humanos , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Int J Biochem Cell Biol ; 44(3): 536-46, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198249

RESUMEN

Alanine:glyoxylate aminotransferase (AGT) is a pyridoxal-phosphate (PLP)-dependent enzyme. Its deficiency causes the hereditary kidney stone disease primary hyperoxaluria type 1. AGT is a highly stable compact dimer and the first 21 residues of each subunit form an extension which wraps over the surface of the neighboring subunit. Naturally occurring and artificial amino acid replacements in this extension create changes in the functional properties of AGT in mammalian cells, including relocation of the enzyme from peroxisomes to mitochondria. In order to elucidate the structural and functional role of this N-terminal extension, we have analyzed the consequences of its removal using a variety of biochemical and cell biological methods. When expressed in Escherichia coli, the N-terminal deleted form of AGT showed the presence of the protein but in an insoluble form resulting in only a 10% soluble yield as compared to the full-length version. The purified soluble fraction showed reduced affinity for PLP and greatly reduced catalytic activity. Although maintaining a dimer form, it was highly prone to self-aggregation. When expressed in a mammalian cell line, the truncated construct was normally targeted to peroxisomes, where it formed large stable but catalytically inactive aggregates. These results suggest that the N-terminal extension plays an essential role in allowing AGT to attain its correct conformation and functional activity. The precise mechanism of this effect is still under investigation.


Asunto(s)
Hiperoxaluria Primaria/genética , Hígado/enzimología , Transaminasas/química , Animales , Células CHO , Clonación Molecular , Cricetinae , Humanos , Ratones , Fragmentos de Péptidos/genética , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Eliminación de Secuencia/genética , Transaminasas/genética
11.
J Biol Inorg Chem ; 16(6): 869-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21547575

RESUMEN

DNA-binding proteins from starved cells (Dps) differ in the number and position of charged residues along the "ferritin-like" pores that are used by iron to reach the ferroxidase center and the protein cavity. These differences are shown to affect significantly the electrostatic potential at the pores, which determines the extent of cooperativity in the iron uptake kinetics and thereby the mass distribution of the ferric hydroxide micelles inside the protein cavity. These conclusions are of biotechnological value in the preparation of protein-enclosed nanomaterials and are expected to apply also to ferritins. They were reached after characterization of the Dps from Listeria innocua, Helicobacter pylori, Thermosynechococcus elongatus, Escherichia coli, and Mycobacterium smegmatis. The characterization comprised the calculation of the electrostatic potential at the pores, determination of the iron uptake kinetics in the presence of molecular oxygen or hydrogen peroxide, and analysis of the proteins by means of the sedimentation velocity after iron incorporation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Ferritinas/química , Hierro/química , Peróxido de Hidrógeno/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxidantes/química , Oxidación-Reducción , Oxígeno/química , Conformación Proteica , Electricidad Estática
12.
J Mol Cell Cardiol ; 49(1): 132-41, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20298697

RESUMEN

Sorcin is a penta-EF-hand protein that interacts with intracellular target proteins after Ca(2+) binding. The sarcolemmal Na(+)/Ca(2+) exchanger (NCX1) may be an important sorcin target in cardiac muscle. In this study, RNAi knockdown of sorcin, purified sorcin or sorcin variants was employed in parallel measurements of: (i) NCX activity in isolated rabbit cardiomyocytes using electrophysiological techniques and (ii) sorcin binding to the NCX1 calcium binding domains (CBD1 and (iii) using surface plasmon resonance and gel overlay techniques. Sorcin is activated by Ca(2+) binding to the EF3 and EF2 regions, which are connected by the D helix. To investigate the importance of this region in the interaction with NCX1, three variants were examined: W105G and W99G, mutated respectively near EF3 and EF2, and E124A that does not bind Ca(2+) due to a mutation at EF3. Downregulation of sorcin decreased and supplementation with wt sorcin (3muM) increased NCX activity in isolated cardiomyocytes. The relative stimulatory effects of the sorcin variants were: W105G>wt sorcin>Sorcin Calcium Binding Domain (SCBD)>W99G>E124A. Sorcin binding to both CBD1 and 2 was observed. In the presence of 50microM Ca(2+), the interaction with CBD1 followed the order W105G>SCBD>wt sorcin>W99G>E124A. In sorcin, the interacting surface can be mapped on the C-terminal Ca(2+)-binding domain in the D helix region comprising W99. The fast association/dissociation rates that characterize the interaction of sorcin with CBD1 and 2 may permit complex formation/dissociation during an excitation/contraction cycle.


Asunto(s)
Calcio/metabolismo , Animales , Motivos EF Hand , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Estructura Secundaria de Proteína , Conejos , Sarcolema/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo
13.
J Biol Chem ; 284(28): 19101-9, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19457858

RESUMEN

Elucidating pore function at the 3-fold channels of 12-subunit, microbial Dps proteins is important in understanding their role in the management of iron/hydrogen peroxide. The Dps pores are called "ferritin-like" because of the structural resemblance to the 3-fold channels of 24-subunit ferritins used for iron entry and exit to and from the protein cage. In ferritins, negatively charged residues lining the pores generate a negative electrostatic gradient that guides iron ions toward the ferroxidase centers for catalysis with oxidant and destined for the mineralization cavity. To establish whether the set of three aspartate residues that line the pores in Listeria innocua Dps act in a similar fashion, D121N, D126N, D130N, and D121N/D126N/D130N proteins were produced; kinetics of iron uptake/release and the size distribution of the iron mineral in the protein cavity were compared. The results, discussed in the framework of crystal growth in a confined space, indicate that iron uses the hydrophilic 3-fold pores to traverse the protein shell. For the first time, the strength of the electrostatic potential is observed to modulate kinetic cooperativity in the iron uptake/release processes and accordingly the size distribution of the microcrystalline iron minerals in the Dps protein population.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/fisiología , Ferritinas/química , Listeria/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Catálisis , Cristalización , Proteínas de Unión al ADN/metabolismo , Hierro/química , Cinética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Oxidantes/química , Proteínas/química , Homología de Secuencia de Aminoácido , Electricidad Estática
14.
FASEB J ; 22(1): 295-306, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17699613

RESUMEN

The penta-EF hand protein sorcin participates in the modulation of Ca2+-induced calcium-release in the heart through the interaction with several Ca2+ channels such as the ryanodine receptor. The modulating activity is impaired in the recently described natural F112L mutant. The F112 residue is located at the end of the D helix next to Asp113, one of the calcium ligands in the EF3 hand endowed with the highest affinity for the metal. The F112L-sorcin X-ray crystal structure at 2.5 A resolution displays marked alterations in the EF3 hand, where the hydrogen bonding network established by Phe112 is disrupted, and in the EF1 region, which is tilted in both monomers that give rise to the dimer, the stable form of the molecule. In turn, the observed tilt is indicative of an increased flexibility of the N-terminal part of the molecule. The structural alterations result in a 6-fold decrease in calcium affinity with respect to the wild-type protein and to an even larger impairment of the interaction with annexin VII and of the ability of sorcin to interact with and inhibit ryanodine receptors. These results provide a plausible structural and functional framework that helps elucidate the phenotypic alterations of mice overexpressing F112L-sorcin.


Asunto(s)
Anexina A7/metabolismo , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Cricetinae , Cristalografía por Rayos X , Cartilla de ADN , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Resonancia por Plasmón de Superficie , Ultracentrifugación
15.
Biochemistry ; 45(41): 12519-29, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17029407

RESUMEN

Sorcin, a 21.6 kDa two-domain penta-EF-hand (PEF) protein, when activated by Ca(2+) binding, interacts with target proteins in a largely uncharacterized process. The two physiological EF-hands EF3 and EF2 do not belong to a structural pair but are connected by the D helix. To establish whether this helix is instrumental in sorcin activation, two D helix residues were mutated: W105, located near EF3 and involved in a network of interactions, and W99, located near EF2 and facing solvent, were substituted with glycine. Neither mutation alters calcium affinity. The interaction of the W105G and W99G mutants with annexin VII and the cardiac ryanodine receptor (RyR2), requiring the sorcin N-terminal and C-terminal domain, respectively, was studied. Surface plasmon resonance experiments show that binding of annexin VII to W99G occurs at the same Ca(2+) concentration as that of the wild type, whereas W105G requires a significantly higher Ca(2+) concentration. Ca(2+) spark activity of isolated heart cells monitors the sorcin-RyR2 interaction and is unaltered by W105G but is reduced equally by W99G and the wild type. Thus, substitution of W105, via disruption of the network of D helix interactions, affects the capacity of sorcin to recognize and interact with either target at physiological Ca(2+) concentrations, while mutation of solvent-facing W99 has little effect. The D helix appears to amplify the localized structural changes that occur at EF3 upon Ca(2+) binding and thereby trigger a structural rearrangement that enables interaction of sorcin with its molecular targets. The same activation process may apply to other PEF proteins in view of the D helix conservation.


Asunto(s)
Anexina A7/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Clonación Molecular , Cricetinae , Cricetulus , ADN Complementario/genética , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
16.
BMC Biochem ; 4: 8, 2003 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12925238

RESUMEN

BACKGROUND: Annexin A7 is a Ca2+- and phospholipid-binding protein expressed as a 47 and 51 kDa isoform, which is thought to be involved in membrane fusion processes. Recently the 47 kDa isoform has been identified in erythrocytes where it was proposed to be a key component in the process of the Ca2+-dependent vesicle release, a process with which red blood cells might protect themselves against an attack by for example complement components. RESULTS: The role of annexin A7 in red blood cells was addressed in erythrocytes from anxA7-/- mice. Interestingly, the Ca2+-mediated vesiculation process was not impaired. Also, the membrane organization appeared not to be disturbed as assessed using gradient fractionation studies. Instead, lack of annexin A7 led to an altered cell shape and increased osmotic resistance of red blood cells. Annexin A7 was also identified in platelets. In these cells its loss led to a slightly slower aggregation velocity which seems to be compensated by an increased number of platelets. The results appear to rule out an important role of annexin A7 in membrane fusion processes occurring in red blood cells. Instead the protein might be involved in the organization of the membrane cytoskeleton. Red blood cells may represent an appropriate model to study the role of annexin A7 in cellular processes. CONCLUSION: We have demonstrated the presence of both annexin A7 isoforms in red blood cells and the presence of the small isoform in platelets. In both cell types the loss of annexin A7 impairs cellular functions. The defects observed are however not compatible with a crucial role for annexin A7 in membrane fusion processes in these cell types.


Asunto(s)
Anexina A7/fisiología , Plaquetas/fisiología , Eritrocitos/fisiología , Animales , Anexina A7/análisis , Anexina A7/genética , Anexina A7/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Tamaño de la Célula , Membrana Eritrocítica/química , Eritrocitos/química , Eritrocitos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Presión Osmótica , Agregación Plaquetaria , Vesículas Secretoras/metabolismo
17.
J Biol Chem ; 278(27): 24921-8, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12711611

RESUMEN

Sorcin is a typical penta-EF-hand protein that participates in Ca2+-regulated processes by translocating reversibly from cytosol to membranes, where it interacts with different target proteins in different tissues. Binding of two Ca2+/monomer triggers translocation, although EF1, EF2, and EF3 are potentially able to bind calcium at micromolar concentrations. To identify the functional pair, the conserved bidentate -Z glutamate in these EF-hands was mutated to yield E53Q-, E94A-, and E124A-sorcin, respectively. Limited structural perturbations occur only in E124A-sorcin due to involvement of Glu-124 in a network of interactions that comprise the long D helix connecting EF3 to EF2. The overall affinity for Ca2+ and for two sorcin targets, annexin VII and the ryanodine receptor, follows the order wild-type > E53Q- > E94A- > E124A-sorcin, indicating that disruption of EF3 has the largest functional impact and that disruption of EF2 and EF1 has progressively smaller effects. Based on this experimental evidence, EF3 and EF2, which are not paired in the canonical manner, are the functional EF-hands. Sorcin is proposed to be activated upon Ca2+ binding to EF3 and transmission of the conformational change at Glu-124 via the D helix to EF2 and from there to EF1 via the canonical structural/functional pairing. This mechanism may be applicable to all penta-EF-hand proteins.


Asunto(s)
Proteínas de Unión al Calcio/química , Secuencia de Aminoácidos , Animales , Transporte Biológico , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Dicroismo Circular , Cricetinae , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Relación Estructura-Actividad
18.
J Mol Biol ; 317(3): 447-58, 2002 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-11922676

RESUMEN

Sorcin is a 21.6 kDa calcium binding protein, expressed in a number of mammalian tissues that belongs to the small, recently identified penta-EF-hand (PEF) family. Like all members of this family, sorcin undergoes a Ca2+-dependent translocation from cytosol to membranes where it binds to target proteins. For sorcin, the targets differ in different tissues, indicating that it takes part in a number of Ca2+-regulated processes. The sorcin monomer is organized in two domains like in all PEF proteins: a flexible, hydrophobic, glycine-rich N-terminal region and a calcium binding C-terminal domain. In vitro, the PEF proteins are dimeric in their Ca2+-free form, but have a marked tendency to precipitate when bound to calcium. Stabilization of the dimeric structure is achieved by pairing of the uneven EF-hand, EF5. Sorcin can also form tetramers at acid pH. The sorcin calcium binding domain (SCBD, residues 33-198) expressed in Escherichia coli was crystallized in the Ca2+-free form. The structure was solved by molecular replacement and was refined to 2.2 A with a crystallographic R-factor of 22.4 %. Interestingly, the asymmetric unit contains two dimers. The structure of the SCBD leads to a model that explains the solution properties and describes the Ca2+-induced conformational changes. Phosphorylation studies show that the N-terminal domain hinders phosphorylation of SCBD, i.e. the rate of phosphorylation increased twofold in the absence of the N-terminal region. In addition, previous fluorescence studies indicated that hydrophobic residues are exposed to solvent upon Ca2+ binding to full-length sorcin. The model accounts for these data by proposing that Ca2+ binding weakens the interactions between the two domains and leads to their reorientation, which exposes hydrophobic regions facilitating the Ca2+-dependent binding to target proteins at or near membranes.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cricetinae , Cricetulus , Cristalografía por Rayos X , Dimerización , Motivos EF Hand , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...