Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794304

RESUMEN

In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.

2.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399838

RESUMEN

Polyimides are a polymer class that has been extensively investigated as a membrane material for gas separation owing to its interesting permselective properties in a wide range of operation temperatures and pressures. In order to improve their properties, the addition of different filler types is currently studied. p-tert-Butylcalix[n]arene macrocycles (PTBCs) with different cavity sizes (PTBC4, PTBC6, PTBC8) were used as fillers in a commercial thermoplastic polyimide, with a concentration in the range 1-9 wt%, to develop nanocomposite membranes for gas separation. The selected macrocycles are attractive organic compounds owing to their porous structure and affinity with organic polymers. The nanocomposite membranes were prepared in the form of films in which the polymeric matrix is a continuous phase incorporating the dispersed additives. The preparation was carried out according to a pre-mixing approach in a mutual solvent, and the solution casting was followed by a controlled solvent evaporation. The films were characterized by investigating their miscibility, morphology, thermal and spectral properties. The gas transport through these films was examined as a function of the temperature and also time. The results evidenced that the incorporation of the chosen nanoporous fillers can be exploited to enhance molecular transport, offering additional pathways and promoting rearrangements of the polymeric chains.

3.
Polymers (Basel) ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904387

RESUMEN

Temperature-responsive materials are highly interesting for temperature-triggered applications such as drug delivery and smart packaging. Imidazolium Ionic Liquids (ILs), with a long side chain on the cation and a melting temperature of around 50 °C, were synthetized and loaded at moderate amounts (up to 20 wt%) within copolymers of polyether and a bio-based polyamide via solution casting. The resulting films were analyzed to assess their structural and thermal properties, and the gas permeation changes due to their temperature-responsive behavior. The splitting of FT-IR signals is evident, and, in the thermal analysis, a shift in the glass transition temperature (Tg) for the soft block in the host matrix towards higher values upon the addition of both ILs is also observed. The composite films show a temperature-dependent permeation with a step change corresponding to the solid-liquid phase change in the ILs. Thus, the prepared polymer gel/ILs composite membranes provide the possibility of modulating the transport properties of the polymer matrix simply by playing with temperature. The permeation of all the investigated gases obeys an Arrhenius-type law. A specific permeation behavior, depending on the heating-cooling cycle sequence, can be observed for carbon dioxide. The obtained results indicate the potential interest of the developed nanocomposites as CO2 valves for smart packaging applications.

4.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850254

RESUMEN

In this study, antibacterial polymer blends based on Polyvinyl Chloride (PVC) and Polystyrene-Ethylene-Butylene-Styrene (SEBS), loaded with the ionic liquid (IL) 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) at three different concentrations (1%, 5%, and 10%), were produced. The IL/blends were characterized by their thermo-mechanical properties, surface morphology, and wettability. IL release from the blends was also evaluated. The agar diffusion method was used to test the antibacterial activity of the blends against Staphylococcus epidermidis and Escherichia coli. Results from thermal analyses showed compatibility between the IL and the PVC matrix, while phase separation in the SEBS/IL blends was observed. These results were confirmed using PY-GC MS data. SEM analyses highlighted abundant IL deposition on PVC blend film surfaces containing the IL at 5-10% concentrations, whereas the SEBS blend film surfaces showed irregular structures similar to islands of different sizes. Data on water contact angle proved that the loading of the IL into both polymer matrices induced higher wettability of the blends' surfaces, mostly in the SEBS films. The mechanical analyses evidenced a lowering of Young's Modulus, Tensile Stress, and Strain at Break in the SEBS blends, according to IL concentration. The PVC/IL blends showed a similar trend, but with an increase in the Strain at Break as IL concentration in the blends increased. Both PVC/IL and SEBS/IL blends displayed the best performance against Staphylococcus epidermidis, being active at low concentration (1%), whereas the antimicrobial activity against Escherichia coli was lower than that of S. epidermidis. Release data highlighted an IL dose-dependent release. These results are promising for a versatile use of these antimicrobial polymers in a variety of fields.

5.
Mater Sci Eng C Mater Biol Appl ; 122: 111920, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641913

RESUMEN

The aim of this study was the development of antimicrobial polyvinylchloride (PVC) blends loaded with 0.1-10% (w/w) of the ILs 1-hexadecyl-3-methylimidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate (OOMmimPF6). The synthetized ILs were characterized by 1HNMR, MALDI-TOF, DSC and TGA. PVC/ILs films were obtained by solvent casting.Thermal and mechanical properties (tensile stress TS and elongation at break EB), morphology by SEM, surface wettability, antimicrobial activity, cytotoxicity and ILs release in sterile water from PVC/ILs film blends were determined. Results demonstrated that the presence of both ILs in PVC formulation slightly affected thermal and mechanical properties of blends. The loading of both ILs into PVC matrix made PVC/ILs films hydrophilic, especially at the highest concentration of HdmimDMSIP. The PVC/ILs blends displayed antibacterial activity up to ILs lowest concentrations (0.1-0.5%). The inhibition of Escherichia coli growth was lower than that showed toward Staphylococcus epidermidis. The addition of 10% ILs concentration resulted excessive as demonstrated by accumulation of ILs on film surfaces (SEM) and ILs high release from PVC/ILs blends during the first day of water immersion. Biocompatibility studies highlighted that the addition of low amounts of both ILs into PVC matrix is not cytotoxic for mouse fibroblast cells (L929), supporting their potential use for biomedical porposes.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Cloruro de Polivinilo
6.
Polymers (Basel) ; 12(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806661

RESUMEN

Thermal degradation processes of poly(ether sulfone) random copolymers having different molar amount of diphenolic acid (DPA) units were studied by direct-pyrolysis/mass spectrometry, stepwise pyrolysis-gas chromatography/mass spectrometry and thermogravimetric techniques. Results highlighted that thermal degradation processes occur in the temperature range from 370 to 650 °C, yielding a char residue of 32-35 wt%, which decreases as the mol% of DPA units rises. The pyrolysis/mass spectra data allowed us to identify the thermal decomposition products and to deduce the possible thermal degradation mechanisms. Thermal degradation data suggest that the decarboxylation process of the pendant acid moiety mainly occurs in the initial step of the pyrolysis of the copolymers studied. Successively, the scission of the generated isobutyl groups occurs in the temperature range between 420 and 480 °C. Known processes involving the main chain random scission of the diphenyl sulfone and diphenyl ether groups were also observed.

7.
Polymers (Basel) ; 12(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823561

RESUMEN

New functionalized Poly(ether sulfone)s having different molar ratio (10, 20, 30, 50, 70, 100 mol%) of 4,4-bis phenoxy pentanoic acid unit (diphenolic acid; DPA) units were synthesized and characterized by (1H and 13C)-NMR, MALDI-TOF MS, FT-IR, DSC and DMA analyses. The microstructural analysis of the copolymers, obtained by 13C-NMR using an appropriate statistical model, shows a random distribution of copolymer sequences, as expected. The presence of different amount of DPA units along the polymer chains affects the chemical and physical properties of the copolymers. The Tg and the contact angle values decrease as the molar fraction of DPA units increases, whereas the hydrophilicity increases. NMR and MALDI-TOF MS analyses show that all polymer chains are almost terminated with hydroxyl and chlorine as end groups. The presence of cyclic oligomers was also observed by MALDI-TOF MS analysis.

8.
Polymers (Basel) ; 12(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630521

RESUMEN

Imidazolium-based ionic liquids (ILs) have interesting antimicrobial activity and their inclusion in a flexible film is ideal to take advantage of their properties in practical applications. Poly(ether-block-amide) (Pebax®Rnew) films were prepared by solution casting, loading two synthetized ILs (1-hexadecyl-3-methylimidazolium dimethyl-5-sulfoisophthalate [Hdmim][DMSIP], IL1 and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate [OOMmim][PF6], IL2) up to 5 wt.%. The ILs were characterized by 1H NMR and MALDI-TOF spectroscopy. The films were investigated for miscibility, morphology, wettability, spectral properties and gas transport. The films display a good thermal stability (>200 °C). Differential scanning calorimetry (DSC) proves phase separation in the blends, that is consistent with FTIR analysis and with the island-like surface morphology observed in the micrographs. Gas permeability tests revealed that the IL-loaded films are dense and poreless, keeping the selectivity of the polymer matrix with a somewhat lessened permeability owing to the impermeable ILs crystals. The film antimicrobial activity, evaluated against Gram-negative and Gram-positive bacterial strains, was correlated to the structure of the incorporated ILs. The smaller IL2 salt did not modify the hydrophobic nature of the neat polymer and was readily released from the films. Instead, IL1, having a longer alkyl chain in the cation, provided a promising antimicrobial activity with a good combination of hydrophilicity, permeability and thermal stability.

9.
Polymers (Basel) ; 12(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370152

RESUMEN

The photo-oxidative degradation processes of bio-based PA11 nanocomposites containing montmorillonite (MMT) and the organo-modified Cloisite®30B were investigated to discriminate the influence of organo-modified components on the polymer durability. Indeed, despite the extensive studies reported, there are still ambiguous points to be clarified from the chemical point of view. To this aim, UV-aged materials were analyzed by Size Exclusion Chromatography (SEC), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). This enabled determining changes in both chemical structure and Molar Masses (MMs) induced by light, heat and oxygen exposure. The addition of organo-modified nanoclays strongly affected the PA11 light durability, triggering the macromolecular chains scission due to the typical αH, Norrish I and II mechanisms. However, the main contribution in boosting the photo-oxidative degradation is induced by iron impurities contained into the clays. Conversely, thermo-oxidation process performed at 215 °C was unambiguously affected by the presence of the organo-modifiers, whose presence determined an enhancement of crosslinking reactions.

10.
Polymers (Basel) ; 12(2)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102420

RESUMEN

A Zn/Al layered double hydroxides (LDHs) hosting carbon nanotubes (80% of CNTs) was synthesized and dispersed into a commercial biodegradable highly amorphous vinyl alcohol polymer at different loading (i.e., 1; 3; 5; 10 wt%). In order to improve the degree of dispersion of the filler into the polymer matrix, an ionic liquid (IL) based on 1-hexadecyl-3-methylimidazolium dimethyl-5-sodiosulfoisophthalate was added to the composites' mixtures. Structural characterization of filler and polymeric composites was carried out. The analysis of thermal, mechanical and electrical properties of the composites, resulted improved compared to the unfilled material, allowed to hypothesize a good dispersion of the LDH-CNTs lamellar filler into the polymer matrix-assisted by the ionic liquid. This was demonstrated comparing electrical conductivity of composite at 5% of LDH-CNTs in the presence and in the absence of IL. The experimental results showed that the electrical conductivity of the sample with IL is four orders of magnitude higher than the one without IL. Furthermore, the percolation threshold of the whole system resulted very low-0.26% of LDH-CNTs loading, which is 0.21% of CNTs.

11.
Materials (Basel) ; 11(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065195

RESUMEN

Dense films based on the hydrophobic Pebax®2533 were prepared by using solution casting in different solvents as well as compression molding and subjected to photo⁻aging under ultraviolet (UV) irradiation. The influence of the preparation method, including the casting solvents, as well as the UV irradiation time selected to treat the samples, were evaluated in terms of permeation rates of pure gases (CO2, N2, O2, CH4, He, and H2). The transport data were correlated with the microstructure and surface properties by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), as well as water contact angle measurements. The obtained results showed that a controlled photo-oxidation process reduces the hydrophobicity of the Pebax®2533 films, increasing their permeability without compromising their integrity.

12.
Environ Monit Assess ; 185(5): 3803-17, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22976116

RESUMEN

In this study, pollen viability and germination of three plant species, Cercis siliquastrum L., Robinia pseudoacacia L., and Spartium junceum L., belonging to the Fabaceae family, was evaluated in sites with different intensity of road traffic, constantly monitored with continuous analysers for air pollutants (carbon monoxide (CO), sulphur dioxide (SO(2)), and nitrogen dioxide (NO(2))) by the Municipality of Catania. Two sites, in which road traffic was absent, were selected, too. The percentages of viable pollen by 2,3,5-trypheniltetrazolium chloride (TTC) test ranged from 59.0 to 90.2 % in C. siliquastrum, from 61.5 to 83.5 % in S. junceum and from 67.5 to 84.3 % in R. pseudoacacia. The percentages of germination varied from 41.0 to 72.7 % in C. siliquastrum, from 42.0 to 64.7 % in S. junceum and from 38.3 to 66.3 % in R. pseudoacacia. The highest percentages of viable pollens were found in no-road traffic stations by either TTC or germination tests, while the lowest values were detected in a site characterised by heavy road traffic. In the monitored period (2007-2009), pollen viability, germinability and tube length of C. siliquastrum resulted in a significant negative correlation to CO, SO(2) and NO(2), whereas data from TTC and germination tests on S. junceum and R. pseudoacacia pollens were not well correlated to air pollutants. The results showed that pollen viability, germination and tube growth in C. siliquastrum were affected by air pollution. S. junceum and R. pseudoacacia were not very influenced by air pollutants, suggesting a different pollen sensitivity of these species.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Polen/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Monóxido de Carbono/análisis , Monóxido de Carbono/toxicidad , Ciudades , Fabaceae/efectos de los fármacos , Fabaceae/fisiología , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Dióxido de Azufre/análisis , Dióxido de Azufre/toxicidad
13.
Anal Chem ; 83(3): 654-60, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21204561

RESUMEN

A direct, rapid, and easy electrospray ionization mass spectrometry (ESI-MS) method to determine concentrations of sebacic acid (SA) and terephthalic acid (TA) residues in biodegradable copolymers was developed. Copolyester samples were synthesized from 1,4-butanediol and sebacic and terephthalic acids by melt polymerization. Extraction of monomers was performed in methanol. Their concentrations were determined by direct infusion ESI-MS, without chromatographic separation, using 1,12-dodecanedioic acid (DDA) as an internal standard. Calibration curves were obtained by plotting the ratio of the areas of the peaks relative to monomers and DDA standard as a function of their concentration ratio. We validated the method by determining the concentration of TA residue using both the ESI-MS protocol and high-performance liquid chromatography (HPLC) analysis with UV detection. The linearity range and the detection limit of this assay were 0.1-5.0 and 0.01 ppm for SA and 0.1-6.0 and 0.03 ppm for TA. This assay represents a useful alternative to conventional methods currently employed for acid quantification, resulting advantageous for its speed and high sensitivity.


Asunto(s)
Ácidos Decanoicos/análisis , Ácidos Dicarboxílicos/análisis , Ácidos Ftálicos/análisis , Polímeros/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Calibración , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Estructura Molecular , Polímeros/metabolismo , Espectrometría de Masa por Ionización de Electrospray/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...