Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338984

RESUMEN

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Piracetam , Humanos , Ratas , Animales , Levetiracetam/farmacología , Levetiracetam/uso terapéutico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Transcriptoma , Piracetam/farmacología , Piracetam/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Giro Dentado
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047461

RESUMEN

Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1ß concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1ß concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.


Asunto(s)
Encefalitis , Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratas , Masculino , Animales , Pilocarpina/toxicidad , Litio/farmacología , Litio/uso terapéutico , Talidomida/farmacología , Talidomida/uso terapéutico , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Hipocampo/metabolismo , Modelos Animales de Enfermedad
3.
Dev Psychobiol ; 64(6): e22283, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748629

RESUMEN

Although individuals with schizophrenia typically present deficits in social interaction, little is known about the quality of their parent-infant interactions. In the present study, we assessed the behavioral effects of neonatal ventral hippocampus lesion (nVHL) in female rats (nVHL is known to induce schizophrenia-like deficits in males). Sexually naïve adult nVHL or sham female rats received cognitive and social tests, and their maternal behavior was observed in independent groups of adult nVHL and sham rats on postpartum days 2, 6, and 12. Compared to Sham females, naïve nVHL rats displayed elevated locomotor activity, less social interaction, and disrupted habituation of the acoustic startle response (ASR), while dorsal immobility (a defensive behavioral response) and prepulse inhibition of ASR were not affected. Although all nVHL mothers retrieved their pups, adopted the crouching posture, and nursed them, they showed disturbances in the display of pup body licking and nest building. Furthermore, a high proportion of nVHL mothers displayed atypical retrieval of pups and re-retrieving of pups, atypical nest-building, excavation, and cannibalism, as well a high level of these behaviors. These data indicate that cognition, locomotor activity, and maternal care is disrupted in nVHL female, suggesting disturbances in mesocorticolimbic dopaminergic systems and/or in social cognition.


Asunto(s)
Esquizofrenia , Animales , Animales Recién Nacidos , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Hipocampo , Humanos , Masculino , Conducta Materna , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Esquizofrenia/patología
4.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455472

RESUMEN

Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.

5.
Brain Res Bull ; 173: 53-65, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991609

RESUMEN

BACKGROUND: Post-weaning social isolated rodents exhibit pathophysiological changes associated with depression including adrenal axis hyperactivity, gonadal hormone level disturbances, molecular alterations in hippocampus, and immobility behavior in the forced swimming test (FST). Although acupuncture by absorbable thread implantation (acu-catgut, AC) elicits antidepressant-like effects in social isolated rats, AC effects on neuroendocrine and hippocampal molecular alterations have been less characterized. OBJECTIVE: To investigate the participation of gonadal hormones, corticosterone, and brain-derived neurotrophic factor (BDNF) hippocampal expression, on the AC antidepressant-like effects in social isolated male rats. METHODS: Sprague-Dawley male rats were raised in social isolation (SI) or standard conditions, for 11 weeks. AC (on Baihui (Du20), Yintang (E X-HN3), Shenshu (BL 23), Pishu (BL 20), Ganshu (BL 18), Xinshu (BL 15) and Guanyuan (Ren 4)), or Sham-AC (puncturing of acupoints without embedding the thread), was applied during the last three weeks of isolation period. Rats were evaluated in the FST; hormones plasmatic levels and hippocampal BDNF content were quantified by ELISA and Western blotting, respectively. RESULTS: Social isolated rats showed more immobility in the FST and had lower testosterone and estradiol levels, higher corticosterone levels, and reduced hippocampal BDNF content than controls. BDNF level in hippocampus inversely correlated to depression-like behavior. AC but not sham-AC normalized immobility behavior, steroid hormone levels, and BDNF content, as in rats raised in a social environment. CONCLUSIONS: AC antidepressant effect could be related to an improvement of hippocampal BDNF protein expression, as well as corticosterone and sex hormones disturbances associated with prolonged exposure to stress caused by social isolation. Present findings have implications for depression treatment in individuals early exposed to stress.


Asunto(s)
Terapia por Acupuntura , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/sangre , Depresión/terapia , Trastorno Depresivo/terapia , Hormonas Esteroides Gonadales/sangre , Aislamiento Social , Animales , Conducta Animal/fisiología , Depresión/metabolismo , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
6.
J Dev Orig Health Dis ; 12(3): 411-419, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32519631

RESUMEN

Experimental studies have demonstrated the effects of maternal fructose consumption during pregnancy and lactation on metabolic alterations in their offspring, especially male offspring. However, few studies have focused on female offspring after providing fructose in food to dam rats. Here, we studied whether offspring of both sexes were differentially affected by a maternal high-fructose diet (HFD). For this purpose, Sprague-Dawley rats were fed during pregnancy and lactation with a standard diet (SD) or a HFD (50% w/w). After weaning, offspring were fed an SD; 3 days later, dams were sacrificed, and their offspring were sacrificed on postnatal day 90. Body weight (BW), food and water intake (only for dams), and various biomarkers of metabolic syndrome were measured. When compared to the SD-fed dams, HFD-fed dams had a reduction in BW and food and water intake. Conversely, adiposity, liver weight, liver lipids, and plasma levels of glucose, insulin, cholesterol, triglycerides, and uric acid were increased in HFD-fed dams. Moreover, the BW, food consumption, weight of retroperitoneal fat pads, and liver lipids increased in female and male offspring of HFD-fed dams. Interestingly, the pups of HFD-fed mothers showed increased levels of leptin and insulin resistance and decreased levels of adiponectin which were more pronounced in male offspring than in female offspring. In contrast, a higher increase in BW was shown earlier in female offspring. Thus, high-fructose consumption by dams during pregnancy and lactation led to sex-specific developmental programming of the metabolic syndrome phenotype in adult offspring.


Asunto(s)
Azúcares de la Dieta/efectos adversos , Desarrollo Fetal , Fenómenos Fisiologicos Nutricionales Maternos , Síndrome Metabólico/etiología , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Ganancia de Peso Gestacional , Lactancia , Masculino , Embarazo , Ratas Sprague-Dawley , Caracteres Sexuales
7.
Brain Sci ; 10(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933015

RESUMEN

Temporal lobe epilepsy (TLE), the most common type of focal epilepsy, affects learning and memory; these effects are thought to emerge from changes in synaptic plasticity. Levetiracetam (LEV) is a widely used antiepileptic drug that is also associated with the reversal of cognitive dysfunction. The long-lasting effect of LEV treatment and its participation in synaptic plasticity have not been explored in early chronic epilepsy. Therefore, through the measurement of evoked field potentials, this study aimed to comprehensively identify the alterations in the excitability and the short-term (depression/facilitation) and long-term synaptic plasticity (long-term potentiation, LTP) of the dentate gyrus of the hippocampus in a lithium-pilocarpine rat model of TLE, as well as their possible restoration by LEV (1 week; 300 mg/kg/day). TLE increased the population spike (PS) amplitude (input/output curve); interestingly, LEV treatment partially reduced this hyperexcitability. Furthermore, TLE augmented synaptic depression, suppressed paired-pulse facilitation, and reduced PS-LTP; however, LEV did not alleviate such alterations. Conversely, the excitatory postsynaptic potential (EPSP)-LTP of TLE rats was comparable to that of control rats and was decreased by LEV. LEV caused a long-lasting attenuation of basal hyperexcitability but did not restore impaired synaptic plasticity in the early chronic phase of TLE.

8.
Behav Pharmacol ; 31(5): 491-499, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31850962

RESUMEN

Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer's disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.


Asunto(s)
Envejecimiento/efectos de los fármacos , Aminoácidos/farmacología , Cognición/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Animales , Tronco Encefálico/metabolismo , Cuerpo Estriado/metabolismo , Habituación Psicofisiológica/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibición Prepulso/efectos de los fármacos , Ratas , Reflejo de Sobresalto
9.
Epilepsy Behav ; 97: 96-104, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207446

RESUMEN

Temporal lobe epilepsy (TLE) is one of the most frequent forms of focal epilepsy; patients with this condition, in addition to exhibiting complex seizures, also exhibit cognitive deficits. In the temporal lobe, the hippocampus, a structure relevant to learning and memory processes, is particularly affected by epilepsy. In animal models of TLE induced by pilocarpine, learning and memory deficiencies associated with changes in synaptic plasticity of the hippocampus have been reported. Cerebrolysin (CBL) is a biologically active mixture of low molecular weight peptides with neuroprotective and neurotrophic effects. The objective of the present study was to determine whether subchronic CBL treatment of rats in the chronic phase of TLE reduces the number and intensity of seizures, and whether CBL treatment can improve cognitive deficits (learning and spatial memory) and dendritic morphology in granular dentate neurons of the hippocampus. Temporal lobe epilepsy (lithium-pilocarpine model) was induced in male Wistar rats (weight, 250-300 g). Two epileptic groups were studied, in which CBL (538 mg/kg) or vehicle was administered intraperitoneally for 5 consecutive days per week for 3 weeks. Respective controls were also included in the study. At the end of treatment, the Barnes maze test (BMT) was used to assess spatial navigational learning and memory. The dendritic morphology of the dentate gyrus was also evaluated using the Golgi-Cox staining method. Results of this study did not support an antiepileptic effect of CBL. Epileptic animals treated with this agent exhibited secondarily generalized seizures similar in frequency and intensity to those of epileptic animals treated only with vehicle. However, when analyzing dendritic morphology of hippocampal granular neurons in these animals, CBL appeared to attenuate dendritic deterioration caused by epilepsy, which was associated with improved cognitive performance of the CBL-treated animals in the BMT compared with vehicle-treated epileptic rats. In conclusion, although CBL did not exert an anticonvulsant effect against secondarily generalized seizures, it can be proposed for use as an add-on therapy in epilepsy management to prevent neuronal alterations, and to improve memory and learning processes.


Asunto(s)
Aminoácidos/farmacología , Cognición/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Epilepsia del Lóbulo Temporal/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Giro Dentado/citología , Giro Dentado/patología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Agonistas Muscarínicos/toxicidad , Neuronas/patología , Pilocarpina/toxicidad , Ratas , Ratas Wistar , Memoria Espacial/efectos de los fármacos
10.
Neurosci Lett ; 675: 48-53, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29601832

RESUMEN

Given the importance of depression and the adverse effects of conventional treatment, it is necessary to seek complementary therapies. In a rat model of depression, this study aimed to assess the behavioral and morphological effects of embedding absorbable thread in acupoints (acu-catgut), and compare the results to those of fluoxetine treatment and the corresponding control groups. Therefore, depressive-like behavior was evaluated with the forced swimming test, and dendritic morphology (in the CA1 hippocampal region) with the Golgi-Cox technique and Sholl analysis. After weaning, male Sprague-Dawley rats were housed in social isolation for 8 weeks to induce depressive-like behavior. They were then given a 21-day treatment by stimulating acupoints with acu-catgut (AC) or fluoxetine (FX) (2 mg/kg). Rats were divided into six groups: Control (socially housed), social isolation (SI), SI + AC, SI + Sham (sham embedding of thread), SI + FX and SI + VH (vehicle). Compared to fluoxetine, acu-catgut treatment was more effective in reversing depressive-like behavior elicited by SI. The SI-induced reduction in dendritic length and spine density in hippocampal CA1 pyramidal neurons was attenuated after prolonged treatment with acu-catgut or fluoxetine. Hence, both treatments proved capable of reversing depressive-like alterations caused by SI, likely due to dendritic remodeling in the hippocampus.


Asunto(s)
Puntos de Acupuntura , Antidepresivos de Segunda Generación/administración & dosificación , Región CA1 Hipocampal/patología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Depresión/prevención & control , Fluoxetina/administración & dosificación , Aislamiento Social , Animales , Región CA1 Hipocampal/efectos de los fármacos , Masculino , Estimulación Física , Ratas Sprague-Dawley
11.
Horm Behav ; 89: 23-29, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27988316

RESUMEN

Melatonin (MLT) is a neurohormone with significant involvement in several biological functions, of which antinociception and tonic immobility (TI) may be the key neurobehavioral components to survive in adverse conditions such as a predator attack. TI-induced antinociception can be elicited, facilitated, or increased through opioid and γ-aminobutyric acid (GABA) among other chemical mediators at several levels of the central nervous system, mainly in the periaqueductal gray (PAG). The aim of this study was to assess the effect of the microinjection of MLT into the main PAG regions that are related to different integrated defensive responses, namely dorsal (D) and ventrolateral (VL), on both antinociception through the tail-flick (TF) test and TI duration as single behavioral response and on combined behavioral responses (TF/TI). We found that the microinjection of MLT into the main PAG areas produced antinociception but did not affect the TI duration. The microinjection of MLT into the D-PAG decreased TF latency during TI in the combined trial (TF/TI), which implies that TI-induced antinociception was blocked. The microinjection of MLT into the VL-PAG maintained the antinociceptive capability of the TI without addition or increase in the antinociceptive effects, implying a permissive effect by MLT on the TI-induced antinociception. MLT administration into the D-PAG decreased the TI duration on the TF/TI, whereas MLT administration into the VL-PAG had the opposite effect of significantly increasing TI duration with the TF/TI trial.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Melatonina/farmacología , Nocicepción/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Masculino , Melatonina/administración & dosificación , Ratas , Ratas Wistar
12.
Horm Behav ; 60(4): 448-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21820440

RESUMEN

Tonic immobility (TI) is also known as "immobility response", "immobility reflex", "animal hypnosis", etc. It is an innate antipredatory behavior characterized by an absence of movement, varying degrees of muscular activity, and a relative unresponsiveness to external stimuli. Experimentally, TI is commonly produced by manually forcing an animal into an inverted position and restraining it in that position until the animal becomes immobile. Part of the neural mechanism(s) of TI involves the medullo-pontine reticular formation, with influence from other components of the brain, notably the limbic system. It has been observed that TI is more prolonged in stressed animals, and systemic injection of corticosterone (CORT) also potentiates this behavior. At present, the anatomical brain regions involved in the CORT modulation of TI are unknown. Thus, our study was made to determine if some pontine areas could be targets for the modulation of TI by CORT. A unilateral nucleus pontis oralis (PnO) microinjection of 1 µL of CORT (0.05 µg/1 µL) in rats resulted in clear behavioral responses. The animals had an increased duration of TI caused by clamping the neck (in this induction, besides of body inversion and restraint, there is also clamping the neck), with an enhancement in open-field motor activity, which were prevented by pretreatment injection into PnO with 1 µL of the mineralocorticoid-receptor antagonist spironolactone (0.5 µg/1 µL) or 1 µL of the glucocorticoid-receptor antagonist mifepristone (0.5 µg/1 µL). In contrast, these behavioral changes were not seen when CORT (0.05 µg/1 µL) was microinjected into medial lemniscus area or paramedian raphe. Our data support the idea that, in stressful situations, glucocorticoids released from adrenals of the prey reach the PnO to produce a hyper arousal state, which in turn can prolong the duration of TI.


Asunto(s)
Encéfalo/efectos de los fármacos , Corticosterona/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/patología , Encéfalo/fisiología , Corticosterona/administración & dosificación , Antagonistas de Hormonas/farmacología , Pérdida de Tono Postural/fisiología , Inyecciones Intraventriculares , Masculino , Microinyecciones , Antagonistas de Receptores de Mineralocorticoides , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Receptores de Glucocorticoides/antagonistas & inhibidores , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
13.
Int J Med Chem ; 2011: 648960, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25954521

RESUMEN

The neonatal ventral hippocampal lesion (nVHL) has been widely used as an animal model for schizophrenia. Rats with an nVHL show several delayed behavioral alterations that mimic some symptoms of schizophrenia. Sprague-Dawley (SD) rats with an nVHL have a decrease in D3 receptors in limbic areas, but the expression of D3 receptors in Wistar (W) rats with an nVHL is unknown. The 7-Hydroxy-2-(N,N-di-n-propylamino) tetralin (7-OH-DPAT) has been reported as a D3-preferring agonist. Thus, we investigated the effect of (±)-7-OH-DPAT (0.25 mg/kg) on the motor activity in male adult W and SD rats after an nVHL. The 7-OH-DPAT caused a decrease in locomotion of W rats with an nVHL, but it did not change the locomotion of SD rats with this lesion. Our results suggest that the differential effect of 7-OH-DPAT between W and SD rats with an nVHL could be caused by a different expression of the D3 receptors. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia.

14.
Brain Res Bull ; 80(6): 331-6, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19772903

RESUMEN

The immobility response is an innate antipredatory behavior in a broad variety of species. The immobility response varies in its postural components but in general is characterized by an absence of movement and a relative unresponsiveness to stimuli. Experimentally in rats, clamping the neck followed by body inversion and manual restrain elicits a response called "immobility by clamping the neck". Stress reactions protect animals against predators and are characterized by activation of the sympathetic and hypothalamic-pituitary-adrenal systems. However, in mammals, the role of acute stress as a modulator of immobility response has been less studied. The aim of our study was to assess the effects of acute stress and the injection of corticosterone (5mg/kg, ip) on immobility by clamping the neck in rats. We observed that either previous acute stress caused by forced exposure to elevated open platform or application of a heat-pain stimulus to the rat's tail during the immobility increased the duration of the immobility response caused by clamping the neck. Also, the corticosterone produced a rapid increase (15 min after injection) in the duration of this immobility response. Our results show that the acute stress, in rats, is a facilitator of the immobility response and suggest a possible nongenomic rapid action of corticosterone over brain structures that control this behavior.


Asunto(s)
Corticosterona/metabolismo , Reacción Cataléptica de Congelación/fisiología , Estrés Psicológico , Enfermedad Aguda , Análisis de Varianza , Animales , Calor , Masculino , Cuello , Pruebas Neuropsicológicas , Dolor , Estimulación Física , Ratas , Ratas Wistar , Restricción Física , Cola (estructura animal) , Factores de Tiempo
15.
Life Sci ; 79(11): 1108-13, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16624327

RESUMEN

Clamping the neck followed by body inversion to a supine position in mice elicits an immobility response called immobility by clamping the neck (ICN). The noxious pinch to the scruff of the neck produces antinociception in "phasic pain" models (e.g. tail-flick test). Here, a "tonic pain" model was used to test the antinociception associated with the ICN, and naloxone was used to determine the role of opioids in such antinociception. Mice were injected intraperitoneally with 0.3 mL of 0.4% acetic acid to produce writhing responses that were measured for one hour. ICN was induced every five minutes for one hour. Naloxone (5 mg/kg ip) was injected 10 min before acetic acid administration. There was a control group, sham clamping (SCLA). These mice were handled and restricted every five minutes as in the ICN but without real clamping. The repetitive inductions of ICN were able to reduce the writhing behavior; this antinociception was blocked by the naloxone pretreatment. In the SCLA group antinociception was not observed. These findings indicate that as in the "phasic pain" model, ICN also was able to elicit antinociception in this "tonic pain" model, and such antinociception seems to be mediated by opioids.


Asunto(s)
Dolor de Cuello/fisiopatología , Péptidos Opioides/fisiología , Restricción Física , Ácido Acético/toxicidad , Animales , Inmovilización/fisiología , Masculino , Ratones , Ratones Endogámicos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Cuello/fisiología , Dolor de Cuello/inducido químicamente , Dimensión del Dolor , Posición Supina
16.
Horm Behav ; 50(1): 27-32, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16473354

RESUMEN

In nature, many species under conditions of stress (e.g., predator attack, pups carried by the mother, mating) show immobility states called "immobility responses" (IRs), which are characterized by the complete absence of movement and a relative unresponsiveness. These IR states can be induced by several kinds of sensorial stimuli. Many brain neurotransmitters from diverse cerebral areas participate in the expression of IRs. Other factors are also involved in IRs, such as learning and hormones, but at present, there is not enough experimental support about these factors. Our purpose was to investigate whether the IRs are subject to sexual hormone modulation and to examine the possible relation to learning processes. We tested the effects of acute testosterone decanoate (30 mg/kg, s.c.) and repetitive induction of two IRs; cataleptic immobility (CAT) and dorsal immobility (DI). These were tested in mice of both sexes which were either gonadectomized or sham-treated. CAT and DI were measured before and then 1 and 5 h after testosterone injection. The results show a differential effect of the repetitive induction on CAT and DI. CAT was augmented with repetition, and DI was decreased. Sex differences of the effects of the acute testosterone treatment were observed. Sham and castrated male mice showed CAT potentiation; in contrast, DI was reduced albeit only in sham male mice. Sham and ovariectomized female mice were not affected by testosterone. These results support the hypothesis that there are multiple immobility systems that can be differentially modulated by brain regions associated with processes of learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Reacción Cataléptica de Congelación/fisiología , Pérdida de Tono Postural/fisiología , Reconocimiento en Psicología/fisiología , Testosterona/fisiología , Análisis de Varianza , Animales , Femenino , Habituación Psicofisiológica/fisiología , Masculino , Ratones , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...