Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Public Health ; 24(1): 1998, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060945

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and osteoporosis (OP) are prevalent diseases in the elderly. This study aims to reveal the clinical association between OSA and OP and explore potential crosstalk gene targets. METHODS: Participants diagnosed with OSA in the National Health and Nutrition Examination Survey (NHANES) database (2015-2020) were included, and OP was diagnosed based on bone mineral density (BMD). We explored the association between OSA and OP, and utilized multivariate logistic regression analysis and machine learning algorithms to explore the risk factors for OP in OSA patients. Overlapping genes of comorbidity were explored using differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Random Forest (RF) methods. RESULTS: In the OSA population, the weighted prevalence of OP was 7.0%. The OP group had more females, lower body mass index (BMI), and more low/middle-income individuals compared to the non-OP group. Female gender and lower BMI were identified as independent risk factors for OP in OSA patients. Gene expression profiling revealed 8 overlapping differentially expressed genes in OP and OSA patients. KCNJ1, NPR3 and WT1-AS were identified as shared diagnostic biomarkers or OSA and OP, all of which are associated with immune cell infiltration. CONCLUSION: This study pinpointed female gender and lower BMI as OP risk factors in OSA patients, and uncovered three pivotal genes linked to OSA and OP comorbidity, offering fresh perspectives and research targets.


Asunto(s)
Encuestas Nutricionales , Osteoporosis , Apnea Obstructiva del Sueño , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Femenino , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/epidemiología , Masculino , Persona de Mediana Edad , Factores de Riesgo , Anciano , Transcriptoma , Adulto , Perfilación de la Expresión Génica
2.
Reprod Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900401

RESUMEN

The significance of NSUN2 in carcinogenesis is gradually being recognized, yet a comprehensive analysis across pan-cancer remains a pivotal void in existing research. In our investigation, we capitalized on the UCSC Xena platform to evaluate NSUN2 expression levels and their prognostic implications across a range of cancer types. Furthermore, we employed the cBioPortal database to delve into the genomic variations of NSUN2 within human cancers. Our study encompassed the use of molecular docking, genomic tumor profiling, and an assessment of the gene's responsiveness to pharmacological treatments. Additionally, we utilized algorithmic techniques to measure the relationship between NSUN2 expression and key clinical biomarkers, such as microsatellite instability (MSI), tumor mutational burden (TMB), and immune cell infiltration. Our results have established a notable association between NSUN2 and endometrial cancer (UCEC), thereby confirming its clinical significance through an analysis of tumoral expression patterns, mutational spectra, methylation profiles, and drug sensitivity. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were crucial tools in elucidating the biological roles of NSUN2 in endometrial cancer. Consistently, elevated NSUN2 expression was associated with unfavorable clinical outcomes and was primarily observed in the context of genetic amplifications. Across 22 distinct tumor types, our analysis revealed a notable correlation between NSUN2 expression and various metrics related to immune cell infiltration, tumor stroma, and immune scores. Notably, higher levels of NSUN2 expression have been linked to a reduced response to certain chemotherapeutic agents, including PHA-793887. In UCEC, a positive correlation between NSUN2 methylation and gene expression hints at a potential epigenetic regulatory mechanism underlying cancer progression. Our study highlights the potential of NSUN2 as a key oncogene and its promising role as a therapeutic target as well as a prognostic biomarker for endometrial cancer. This underscores its potential importance in predicting responses to immunotherapy.

3.
J Transl Med ; 22(1): 514, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812032

RESUMEN

The aging process of the kidneys is accompanied with several structural diseases. Abnormal fiber formation disrupts the balance of kidney structure and function, causing to end-stage renal disease and subsequent renal failure. Despite this, the precise mechanism underlying renal damage in aging remains elusive. In this study, ABI3BP gene knockout mice were used to investigate the role of ABI3BP in renal aging induced by irradiation. The results revealed a significant increase in ABI3BP expression in HK2 cells and kidney tissue of aging mice, with ABI3BP gene knockout demonstrating a mitigating effect on radiation-induced cell aging. Furthermore, the study observed a marked decrease in Klotho levels and an increase in ferroptosis in renal tissue and HK2 cells following irradiation. Notably, ABI3BP gene knockout not only elevated Klotho expression but also reduced ferroptosis levels. A significant negative correlation between ABI3BP and Klotho was established. Further experiments demonstrated that Klotho knockdown alleviated the aging inhibition caused by ABI3BP downregulation. This study identifies the upregulation of ABI3BP in aged renal tubular epithelial cells, indicating a role in promoting ferroptosis and inducing renal aging by inhibiting Klotho expression.


Asunto(s)
Envejecimiento , Ferroptosis , Riñón , Proteínas Klotho , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular , Glucuronidasa/metabolismo , Riñón/metabolismo , Riñón/patología , Proteínas Klotho/metabolismo , Ratones Endogámicos C57BL
4.
Biol Direct ; 19(1): 32, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685056

RESUMEN

BACKGROUND: Doxorubicin (Dox) is associated with various liver injuries, limiting its clinical utility. This study investigates whether NSUN2 participates in Dox-induced liver injury and the associated molecular mechanism. METHODS: In vivo and in vitro liver cell injury models were constructed based on Dox therapy. The protein levels of NSUN2 and oxidative stress indicators Nrf2, HO-1, and NQO1 were evaluated by Western blot. The RNA binding potential was detected by RNA methylation immunoprecipitation (RIP). Additionally, the effect of NSUN2 on Nrf2 mRNA synthesis and localization was evaluated using an RNA fluorescence probe. RESULTS: NSUN2 was downregulated, and liver tissue suffered significant pathological damage in the Dox group. The levels of ALT and AST significantly increased. NSUN2 interference exacerbated Dox-induced liver cell damage, which was reversed by NSUN2 overexpression. RIP demonstrated that NSUN2 recognized and bound to Nrf2 mRNA. Western blot analysis showed the protein level of Nrf2 in the NSUN2-WT group was significantly higher than that of the control group, whereas there was no significant change in Nrf2 level in the mutant NSUN2 group. Luciferase analysis demonstrated that NSUN2 could recognize and activate the Nrf2 5'UTR region of LO2 cells. In addition, RIP analysis revealed that ALYREF could recognize and bind to Nrf2 mRNA and that ALYREF controls the regulatory effect of NSUN2 on Nrf2. CONCLUSION: NSUN2 regulates Dox-induced liver cell damage by increasing Nrf2 mRNA m5C methylation to inhibit inhibiting antioxidant stress. The regulatory effect of NSUN2 on Nrf2 depends on ALYREF.


Asunto(s)
Hidrolasas de Éster Carboxílico , Doxorrubicina , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Doxorrubicina/toxicidad , Doxorrubicina/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Masculino , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos
5.
Epigenetics ; 19(1): 2323751, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38431880

RESUMEN

Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.


Asunto(s)
Oxigenasas de Función Mixta , Neoplasias del Cuello Uterino , Femenino , Humanos , Autofagia/genética , Proliferación Celular , Metilación de ADN , Oxigenasas de Función Mixta/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/genética , Neoplasias del Cuello Uterino/genética
7.
Cell Death Discov ; 9(1): 43, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739432

RESUMEN

Doxorubicin (DOX) is a commonly used antitumor drug, but its application has been limited because of its strong cardiac damage. This study aims to explore the role of NSUN2 in DOX-induced heart injury. C57BL/6J mice were intraperitoneally injected with 20 mg/Kg DOX to induce heart injury. After 3 days, the cardiac function, cardiac histopathology, myocardial apoptosis, and the expression level of NSUN2 were detected. In vitro, H9C2 cells were transfected with NSUN2 siRNA or overexpressed lentivirus and then treated with 500 ng/ml DOX. After 24 h, the changes in reactive oxygen species (ROS), apoptosis, and NSUN2 expression were detected. After DOX treatment, both in vitro and in vivo experiments showed that the cardiac function decreased, the number of apoptotic cells increased, and the expression level of NSUN2 increased. Interfering the expression of NSUN2 by siRNA promoted DOX-induced heart injury, while overexpression of NSUN2 could inhibit DOX-induced heart injury. Further study showed that NSUN2 promoted antioxidative stress by upregulating the Nrf2 protein level. In addition, NSUN2 overexpression could increase the half-life of Nrf2 mRNA. m5C RNA methylation immunoprecipitation (MeRIP) also showed that the level of Nrf2 m5C mRNA was significantly increased in NSUN2 overexpressed group when compared to the GFP group. NSUN2 enhances the expression of Nrf2 by promoting Nrf2 mRNA m5C modification and enhances its antioxidative stress effect to alleviate DOX-induced myocardial injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA