Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 3911-3923, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38364872

RESUMEN

Double-strand DNA breaks are the severest type of genomic damage, requiring rapid response to ensure survival. RecBCD helicase in prokaryotes initiates processive and rapid DNA unzipping, essential for break repair. The energetics of RecBCD during translocation along the DNA track are quantitatively not defined. Specifically, it's essential to understand the mechanism by which RecBCD switches between its binding states to enable its translocation. Here, we determine, by systematic affinity measurements, the degree of coupling between DNA and nucleotide binding to RecBCD. In the presence of ADP, RecBCD binds weakly to DNA that harbors a double overhang mimicking an unwinding intermediate. Consistently, RecBCD binds weakly to ADP in the presence of the same DNA. We did not observe coupling between DNA and nucleotide binding for DNA molecules having only a single overhang, suggesting that RecBCD subunits must both bind DNA to 'sense' the nucleotide state. On the contrary, AMPpNp shows weak coupling as RecBCD remains strongly bound to DNA in its presence. Detailed thermodynamic analysis of the RecBCD reaction mechanism suggests an 'energetic compensation' between RecB and RecD, which may be essential for rapid unwinding. Our findings provide the basis for a plausible stepping mechanism' during the processive translocation of RecBCD.


Asunto(s)
ADN , Exodesoxirribonucleasa V , Exodesoxirribonucleasa V/metabolismo , Sitios de Unión , ADN/metabolismo , ADN/química , Unión Proteica , Adenosina Difosfato/metabolismo , Nucleótidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Reparación del ADN
2.
Nat Commun ; 13(1): 1806, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379800

RESUMEN

The RecBCD helicase initiates double-stranded break repair in bacteria by processively unwinding DNA with a rate approaching ∼1,600 bp·s-1, but the mechanism enabling such a fast rate is unknown. Employing a wide range of methodologies - including equilibrium and time-resolved binding experiments, ensemble and single-molecule unwinding assays, and crosslinking followed by mass spectrometry - we reveal the existence of auxiliary binding sites in the RecC subunit, where ATP binds with lower affinity and distinct chemical interactions as compared to the known catalytic sites. The essentiality and functionality of these sites are demonstrated by their impact on the survival of E.coli after exposure to damage-inducing radiation. We propose a model by which RecBCD achieves its optimized unwinding rate, even when ATP is scarce, by using the auxiliary binding sites to increase the flux of ATP to its catalytic sites.


Asunto(s)
Proteínas de Escherichia coli , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/metabolismo , ADN Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo
3.
Elife ; 82019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30601118

RESUMEN

The subunits of the bacterial RecBCD act in coordination, rapidly and processively unwinding DNA at the site of a double strand break. RecBCD is able to displace DNA-binding proteins, suggesting that it generates high forces, but the specific role of each subunit in the force generation is unclear. Here, we present a novel optical tweezers assay that allows monitoring the activity of RecBCD's individual subunits, when they are part of an intact full complex. We show that RecBCD and its subunits are able to generate forces up to 25-40 pN without a significant effect on their velocity. Moreover, the isolated RecD translocates fast but is a weak helicase with limited processivity. Experiments at a broad range of [ATP] and forces suggest that RecD unwinds DNA as a Brownian ratchet, rectified by ATP binding, and that the presence of the other subunits shifts the ratchet equilibrium towards the post-translocation state.


Asunto(s)
ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , ADN Helicasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasa V/genética , Cinética , Pinzas Ópticas , Unión Proteica , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
4.
Dev Cell ; 46(1): 59-72.e4, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29974864

RESUMEN

Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants have developed adaptive strategies to cope with low iron or phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates root growth in Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibits it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth depended on the brassinosteroid receptor but was apparently hormone ligand-independent. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1, and the ferroxidase LPR1 operate at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Hierro/análisis , Proteínas Nucleares/metabolismo , Oxidorreductasas/metabolismo , Fosfatos/análisis , Raíces de Plantas/crecimiento & desarrollo , Adaptación Fisiológica/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Nucleares/genética , Oxidorreductasas/genética , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA