Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Mater ; 22(5): 644-655, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36581770

RESUMEN

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Asunto(s)
Actinas , Neoplasias , ADN , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Citosol/metabolismo , Transducción de Señal
3.
J Mol Cell Biol ; 14(11)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36460033

RESUMEN

Peritoneal metastases (PM) from colorectal cancer (CRC) are associated with poor survival. The extracellular matrix (ECM) plays a fundamental role in modulating the homing of CRC metastases to the peritoneum. The mechanisms underlying the interactions between metastatic cells and the ECM, however, remain poorly understood, and the number of in vitro models available for the study of the peritoneal metastatic process is limited. Here, we show that decellularized ECM of the peritoneal cavity allows the growth of organoids obtained from PM, favoring the development of three-dimensional (3D) nodules that maintain the characteristics of in vivo PM. Organoids preferentially grow on scaffolds obtained from neoplastic peritoneum, which are characterized by greater stiffness than normal scaffolds. A gene expression analysis of organoids grown on different substrates reflected faithfully the clinical and biological characteristics of the organoids. An impact of the ECM on the response to standard chemotherapy treatment for PM was also observed. The ex vivo 3D model, obtained by combining patient-derived decellularized ECM with organoids to mimic the metastatic niche, could be an innovative tool to develop new therapeutic strategies in a biologically relevant context to personalize treatments.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Peritoneales , Humanos , Matriz Extracelular Descelularizada , Peritoneo , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Organoides , Neoplasias Colorrectales/metabolismo
4.
Cell Rep ; 40(8): 111256, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001966

RESUMEN

Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.


Asunto(s)
Ayuno , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1/metabolismo , Glucólisis , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral
5.
Haematologica ; 107(8): 1864-1879, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021606

RESUMEN

Primary Epstein-Barr virus (EBV)-positive nodal T/NK-cell lymphoma (PTCL-EBV) is a poorly understood disease which shows features resembling extranodal NK/T-cell lymphoma (ENKTL) and is currently not recognized as a distinct entity but categorized as a variant of primary T-cell lymphoma not otherwise specified (PTCL-NOS). Herein, we analyzed copynumber aberrations (n=77) with a focus on global measures of genomic instability and homologous recombination deficiency and performed gene expression (n=84) and EBV miRNA expression (n=24) profiling as well as targeted mutational analysis (n=16) to further characterize PTCL-EBV in relation to ENKTL and PTCL-NOS. Multivariate analysis revealed that patients with PTCL-EBV had a significantly worse outcome compared to patients with PTCL-NOS (P=0.002) but not to those with ENKTL. Remarkably, PTCL-EBV exhibited significantly lower genomic instability and homologous recombination deficiency scores compared to ENKTL and PTCL-NOS. Gene set enrichment analysis revealed that many immune-related pathways, interferon α/γ response, and IL6_JAK_STAT3 signaling were significantly upregulated in PTCLEBV and correlated with lower genomic instability scores. We also identified that NFκB-associated genes, BIRC3, NFKB1 (P50) and CD27, and their proteins are upregulated in PTCL-EBV. Most PTCL-EBV demonstrated a type 2 EBV latency pattern and, strikingly, exhibited downregulated expression of most EBV miRNA compared to ENKTL and their target genes were also enriched in immune-related pathways. PTCL-EBV also showed frequent mutations of TET2, PIK3CD and STAT3, and are characterized by microsatellite stability. Overall, poor outcome, low genomic instability, upregulation of immune pathways and downregulation of EBV miRNA are distinctive features of PTCL-EBV. Our data support the concept that PTCL-EBV could be considered as a distinct entity, provide novel insights into the pathogenesis of the disease and offer potential new therapeutic targets for this tumor.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma Extranodal de Células NK-T , Linfoma de Células T Periférico , MicroARNs , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Inestabilidad Genómica , Herpesvirus Humano 4/genética , Humanos , Linfoma Extranodal de Células NK-T/diagnóstico , Linfoma Extranodal de Células NK-T/genética , Linfoma de Células T Periférico/diagnóstico , Linfoma de Células T Periférico/genética , MicroARNs/genética , Regulación hacia Arriba
6.
Cancer Discov ; 12(1): 90-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789537

RESUMEN

In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments. Integrated transcriptomic and deep-phenotyping analyses revealed that FMD profoundly reshapes anticancer immunity by inducing the contraction of peripheral blood immunosuppressive myeloid and regulatory T-cell compartments, paralleled by enhanced intratumor Th1/cytotoxic responses and an enrichment of IFNγ and other immune signatures associated with better clinical outcomes in patients with cancer. Our findings lay the foundations for phase II/III clinical trials aimed at investigating FMD antitumor efficacy in combination with standard antineoplastic treatments. SIGNIFICANCE: Cyclic FMD is well tolerated and causes remarkable systemic metabolic changes in patients with different tumor types and treated with concomitant antitumor therapies. In addition, the FMD reshapes systemic and intratumor immunity, finally activating several antitumor immune programs. Phase II/III clinical trials are needed to investigate FMD antitumor activity/efficacy.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Ayuno , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias Colorrectales/dietoterapia , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento
7.
Cell Metab ; 33(11): 2247-2259.e6, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731655

RESUMEN

Metastatic tumors remain lethal due to primary/acquired resistance to therapy or cancer stem cell (CSC)-mediated repopulation. We show that a fasting-mimicking diet (FMD) activates starvation escape pathways in triple-negative breast cancer (TNBC) cells, which can be identified and targeted by drugs. In CSCs, FMD lowers glucose-dependent protein kinase A signaling and stemness markers to reduce cell number and increase mouse survival. Accordingly, metastatic TNBC patients with lower glycemia survive longer than those with higher baseline glycemia. By contrast, in differentiated cancer cells, FMD activates PI3K-AKT, mTOR, and CDK4/6 as survival/growth pathways, which can be targeted by drugs to promote tumor regression. FMD cycles also prevent hyperglycemia and other toxicities caused by these drugs. These data indicate that FMD has wide and differential effects on normal, cancer, and CSCs, allowing the rapid identification and targeting of starvation escape pathways and providing a method potentially applicable to many malignancies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Ayuno , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo
8.
Tissue Barriers ; 9(3): 1926190, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34152937

RESUMEN

In some organs, such as the brain, endothelial cells form a robust and highly selective blood-to-tissue barrier. However, in other organs, such as the intestine, endothelial cells provide less stringent permeability, to allow rapid exchange of solutes and nutrients where needed. To maintain the structural and functional integrity of the highly dynamic blood-brain and gut-vascular barriers, endothelial cells form highly specialized cell-cell junctions, known as adherens junctions and tight junctions. Claudins are a family of four-membrane-spanning proteins at tight junctions and they have both barrier-forming and pore-forming properties. Tissue-specific expression of claudins has been linked to different diseases that are characterized by barrier impairment. In this review, we summarize the more recent progress in the field of the claudins, with particular attention to their expression and function in the blood-brain barrier and the recently described gut-vascular barrier, under physiological and pathological conditions.Abbreviations: 22q11DS 22q11 deletion syndrome; ACKR1 atypical chemokine receptor 1; AD Alzheimer disease; AQP aquaporin; ATP adenosine triphosphate; Aß amyloid ß; BAC bacterial artificial chromosome; BBB blood-brain barrier; C/EBP-α CCAAT/enhancer-binding protein α; cAMP cyclic adenosine monophosphate (or 3',5'-cyclic adenosine monophosphate); CD cluster of differentiation; CNS central nervous system; DSRED discosoma red; EAE experimental autoimmune encephalomyelitis; ECV304 immortalized endothelial cell line established from the vein of an apparently normal human umbilical cord; EGFP enhanced green fluorescent protein; ESAM endothelial cell-selective adhesion molecule; GLUT-1 glucose transporter 1; GVB gut-vascular barrier; H2B histone H2B; HAPP human amyloid precursor protein; HEK human embryonic kidney; JACOP junction-associated coiled coil protein; JAM junctional adhesion molecules; LYVE1 lymphatic vessel endothelial hyaluronan receptor 1; MADCAM1 mucosal vascular addressin cell adhesion molecule 1; MAPK mitogen-activated protein kinase; MCAO middle cerebral artery occlusion; MMP metalloprotease; MS multiple sclerosis; MUPP multi-PDZ domain protein; PATJ PALS-1-associated tight junction protein; PDGFR-α platelet-derived growth factor receptor α polypeptide; PDGFR-ß platelet-derived growth factor receptor ß polypeptide; RHO rho-associated protein kinase; ROCK rho-associated, coiled-coil-containing protein kinase; RT-qPCR real time quantitative polymerase chain reactions; PDGFR-ß soluble platelet-derived growth factor receptor, ß polypeptide; T24 human urinary bladder carcinoma cells; TG2576 transgenic mice expressing the human amyloid precursor protein; TNF-α tumor necrosis factor α; WTwild-type; ZO zonula occludens.


Asunto(s)
Claudinas , Células Endoteliales , Péptidos beta-Amiloides , Animales , Encéfalo , Ratones , Uniones Estrechas
9.
Cancer Immunol Res ; 9(7): 825-837, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33941587

RESUMEN

Tumors undergo dynamic immunoediting as part of a process that balances immunologic sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TIL) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on T-cell receptor (TCR) specificity gained through recombination events during their development. We hypothesized that within the tumor microenvironment (TME), an antigenic milieu and immunologic interface, tumor-infiltrating peripheral T cells could reexpress key elements of the TCR recombination machinery, namely, Rag1 and Rag2 recombinases and Tdt polymerase, as a potential mechanism involved in the revision of TCR specificity. Using two syngeneic invasive breast cancer transplantable models, 4T1 and TS/A, we observed that Rag1, Rag2, and Dntt in situ mRNA expression characterized rare tumor-infiltrating T cells. In situ expression of the transcripts was increased in coisogenic Mlh1-deficient tumors, characterized by genomic overinstability, and was also modulated by PD-1 immune-checkpoint blockade. Through immunolocalization and mRNA hybridization analyses, we detected the presence of rare TDT+RAG1/2+ cells populating primary tumors and draining lymph nodes in human invasive breast cancer. Analysis of harmonized single-cell RNA-sequencing data sets of human cancers identified a very small fraction of tumor-associated T cells, characterized by the expression of recombination/revision machinery transcripts, which on pseudotemporal ordering corresponded to differentiated effector T cells. We offer thought-provoking evidence of a TIL microniche marked by rare transcripts involved in TCR shaping.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Recombinación Genética/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Mama/inmunología , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/metabolismo , Daño del ADN/inmunología , ADN Nucleotidilexotransferasa/genética , ADN Nucleotidilexotransferasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas Nucleares/metabolismo , RNA-Seq , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
10.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573335

RESUMEN

Germline pathogenic variants (PVs) in the BRCA1 or BRCA2 genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the BRCA1/2 PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 BRCA1/2 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo BRCA1/2 PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo BRCA1/2 PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.

11.
iScience ; 23(10): 101562, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083730

RESUMEN

We applied digital spatial profiling for 87 immune and stromal genes to lymph node germinal center (GC) dark- and light-zone (DZ/LZ) regions of interest to obtain a differential signature of these two distinct microenvironments. The spatially resolved 53-genes signature, comprising key genes of the DZ mutational machinery and LZ immune and mesenchymal milieu, was applied to the transcriptomes of 543 GC-related diffuse large B cell lymphomas and double-hit (DH) lymphomas. According to the DZ/LZ signature, the GC-related lymphomas were sub-classified into two clusters. The subgroups differed in the distribution of DH cases and survival, with most DH displaying a distinct DZ-like profile. The clustering analysis was also performed using a 25-genes signature composed of genes positively enriched in the non-B, stromal sub-compartments, for the first time achieving DZ/LZ discrimination based on stromal/immune features. The report offers new insight into the GC microenvironment, hinting at a DZ microenvironment of origin in DH lymphomas.

12.
EBioMedicine ; 61: 103055, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33096480

RESUMEN

BACKGROUND: Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. METHODS: Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. FINDINGS: We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. INTERPRETATION: Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. FUNDING: This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.


Asunto(s)
Biomarcadores de Tumor , Heterogeneidad Genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Células del Estroma/metabolismo , Microambiente Tumoral/genética , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunofenotipificación , Hibridación in Situ , Ratones , Modelos Biológicos , Fenotipo , Pronóstico , Análisis de Secuencia de ARN , Células del Estroma/patología , Transcriptoma
13.
Genet Med ; 20(4): 452-457, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28837162

RESUMEN

PurposeMonoallelic germ-line mutations in the BRCA1/FANCS, BRCA2/FANCD1 and PALB2/FANCN genes confer high risk of breast cancer. Biallelic mutations in these genes cause Fanconi anemia (FA), characterized by malformations, bone marrow failure, chromosome fragility, and cancer predisposition (BRCA2/FANCD1 and PALB2/FANCN), or an FA-like disease presenting a phenotype similar to FA but without bone marrow failure (BRCA1/FANCS). FANCM monoallelic mutations have been reported as moderate risk factors for breast cancer, but there are no reports of any clinical phenotype observed in carriers of biallelic mutations.MethodsBreast cancer probands were subjected to mutation analysis by sequencing gene panels or testing DNA damage response genes.ResultsFive cases homozygous for FANCM loss-of-function mutations were identified. They show a heterogeneous phenotype including cancer predisposition, toxicity to chemotherapy, early menopause, and possibly chromosome fragility. Phenotype severity might correlate with mutation position in the gene.ConclusionOur data indicate that biallelic FANCM mutations do not cause classical FA, providing proof that FANCM is not a canonical FA gene. Moreover, our observations support previous findings suggesting that FANCM is a breast cancer-predisposing gene. Mutation testing of FANCM might be considered for individuals with the above-described clinical features.


Asunto(s)
Alelos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Fragilidad Cromosómica , ADN Helicasas/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Mutación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Consanguinidad , Resistencia a Antineoplásicos/genética , Femenino , Estudios de Asociación Genética , Genotipo , Mutación de Línea Germinal , Humanos , Masculino , Linaje , Fenotipo , Medición de Riesgo , Factores de Riesgo
14.
Nature ; 546(7657): 302-306, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28562582

RESUMEN

Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR-) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR+) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR+ tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3ß) activity to support MYC-controlled gene expression. BCR- tumour cells exhibit increased GSK3ß activity and are rescued from their competitive growth disadvantage by GSK3ß inhibition. BCR- lymphoma variants that restore competitive fitness normalize GSK3ß activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR- tumour cells.


Asunto(s)
Linfocitos B/metabolismo , Genes myc , Aptitud Genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Linfoma/genética , Linfoma/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfoma de Burkitt/genética , Linfoma de Burkitt/inmunología , Linfoma de Burkitt/patología , Carbono/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Linfoma/enzimología , Linfoma/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Mutación , Receptores de Antígenos de Linfocitos B/deficiencia , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Células Tumorales Cultivadas
15.
J Clin Invest ; 123(12): 5009-22, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24200695

RESUMEN

Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte-induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/enzimología , Linfoma no Hodgkin/etiología , Complejo Represivo Polycomb 2/fisiología , Animales , Apoptosis , Linfocitos B/patología , Ciclo Celular , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Citidina Desaminasa/fisiología , Daño del ADN , Proteína Potenciadora del Homólogo Zeste 2 , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico de Cadena Pesada de Linfocito B , Silenciador del Gen , Centro Germinal/inmunología , Centro Germinal/patología , Inmunidad Humoral , Memoria Inmunológica , Linfoma no Hodgkin/enzimología , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/patología , Linfopoyesis , Metilación , Ratones , Ratones Transgénicos , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Procesamiento Proteico-Postraduccional , Factores de Transcripción/fisiología
16.
Mol Cell ; 37(2): 282-93, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122409

RESUMEN

The RAG1 and RAG2 proteins are the only lymphoid-specific factors required to perform the first step of V(D)J recombination, DNA cleavage. While the catalytic domain of RAG1, the core region, has been well characterized, the role of the noncore region in modulating chromosomal V(D)J recombination efficiency remains ill defined. Recent studies have highlighted the role of chromatin structure in regulation of V(D)J recombination. Here we show that RAG1 itself, through a RING domain within its N-terminal noncore region, preferentially interacts directly with and promotes monoubiquitylation of histone H3. Mutations affecting the RAG1 RING domain reduce histone H3 monoubiquitylation activity, decrease V(D)J recombination activity in vivo, reduce formation of both signal-joint and coding-joint products on episomal substrates, and decrease efficiency of V(D)J recombination at the endogenous IgH locus in lymphoid cells. The results reveal that RAG1-mediated histone monoubiquitylation activity plays a role in regulating the joining phase of chromosomal V(D)J recombination.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/fisiología , Dominios RING Finger/fisiología , Sitios de Unión , Línea Celular , Proteínas de Homeodominio/química , Humanos , Mutagénesis Sitio-Dirigida , Recombinación Genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...