Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(9): 1467-1478, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477614

RESUMEN

Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.


Asunto(s)
Linfocitos T CD4-Positivos , Interleucinas , Malaria , Plasmodium , Animales , Ratones , Linfocitos B , Linfocitos T CD4-Positivos/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Malaria/inmunología , Células B de Memoria/inmunología , Ratones Endogámicos C57BL , Plasmodium/inmunología
2.
Nat Immunol ; 22(8): 996-1007, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34282329

RESUMEN

During chronic viral infection, CD8+ T cells develop into three major phenotypically and functionally distinct subsets: Ly108+TCF-1+ progenitors, Ly108-CX3CR1- terminally exhausted cells and the recently identified CX3CR1+ cytotoxic effector cells. Nevertheless, how CX3CR1+ effector cell differentiation is transcriptionally and epigenetically regulated remains elusive. Here, we identify distinct gene regulatory networks and epigenetic landscapes underpinning the formation of these subsets. Notably, our data demonstrate that CX3CR1+ effector cells bear a striking similarity to short-lived effector cells during acute infection. Genetic deletion of Tbx21 significantly diminished formation of the CX3CR1+ subset. Importantly, we further identify a previously unappreciated role for the transcription factor BATF in maintaining a permissive chromatin structure that allows the transition from TCF-1+ progenitors to CX3CR1+ effector cells. BATF directly bound to regulatory regions near Tbx21 and Klf2, modulating their enhancer accessibility to facilitate the transition. These mechanistic insights can potentially be harnessed to overcome T cell exhaustion during chronic infection and cancer.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Coriomeningitis Linfocítica/inmunología , Proteínas de Dominio T Box/genética , Subgrupos de Linfocitos T/citología , Animales , Antígenos Ly/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Línea Celular , Femenino , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología
3.
PLoS Pathog ; 17(2): e1009288, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529242

RESUMEN

Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.


Asunto(s)
Formación de Anticuerpos/inmunología , Antimaláricos/inmunología , Linfocitos T CD4-Positivos/inmunología , Interleucina-10/metabolismo , Activación de Linfocitos/inmunología , Malaria/inmunología , Plasmodium yoelii/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Malaria/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
5.
Cell Rep ; 21(7): 1839-1852, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141217

RESUMEN

Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunidad Humoral , Memoria Inmunológica , Malaria/inmunología , Plasmodium/inmunología , Células TH1/inmunología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores OX40/metabolismo
6.
J Immunol ; 198(2): 617-622, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940658

RESUMEN

IL-10 is a pleiotropic cytokine expressed during malaria, a disease characterized by short-lived, parasite-specific Ab responses. The role of IL-10 in regulating B cell responses during malaria is not known. In this study we report that IL-10 is essential for anti-Plasmodium humoral immunity. We identify that germinal center (GC) B cell reactions, isotype-switched Ab responses, parasite control, and host survival require B cell-intrinsic IL-10 signaling. IL-10 also indirectly supports humoral immunity by suppressing excessive IFN-γ, which induces T-bet expression in B cells. Genetic ablation of either IFN-γ signaling or T-bet expression in B cells substantially enhanced GC B cell responses and anti-Plasmodium Ab production. Together, our data show that B cell-intrinsic IL-10 enhances whereas B cell-intrinsic IFN-γ and T-bet suppress GC B cell responses and anti-Plasmodium humoral immunity. These data identify critical immunoregulatory circuits in B cells that may be targeted to promote long-lived humoral immunity and resistance to malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Interleucina-10/inmunología , Malaria/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunidad Humoral/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasmodium yoelii
7.
PLoS Pathog ; 12(10): e1005945, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27732671

RESUMEN

CD4 T cell-dependent antibody responses are essential for limiting Plasmodium parasite replication and the severity of malaria; however, the factors that regulate humoral immunity during highly inflammatory, Th1-biased systemic infections are poorly understood. Using genetic and biochemical approaches, we show that Plasmodium infection-induced type I interferons limit T follicular helper accumulation and constrain anti-malarial humoral immunity. Mechanistically we show that CD4 T cell-intrinsic type I interferon signaling induces T-bet and Blimp-1 expression, thereby promoting T regulatory 1 responses. We further show that the secreted effector cytokines of T regulatory 1 cells, IL-10 and IFN-γ, collaborate to restrict T follicular helper accumulation, limit parasite-specific antibody responses, and diminish parasite control. This circuit of interferon-mediated Blimp-1 induction is also operational during chronic virus infection and can occur independently of IL-2 signaling. Thus, type I interferon-mediated induction of Blimp-1 and subsequent expansion of T regulatory 1 cells represent generalizable features of systemic, inflammatory Th1-biased viral and parasitic infections that are associated with suppression of humoral immunity.


Asunto(s)
Inmunidad Humoral/inmunología , Interferón Tipo I/inmunología , Malaria/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Ratones Endogámicos C57BL
8.
Methods Mol Biol ; 1325: 19-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26450376

RESUMEN

Whole attenuated parasite vaccines designed to elicit immunity against the clinically silent preerythrocytic stage of Plasmodium infection represent the most efficacious experimental platforms currently in clinical trial. Studies in rodents and humans show that T cells mediate vaccine-induced protection. Thus, determining the quantitative and qualitative properties of these T cells remains a major research focus. Most rodent models of preerythrocytic anti-Plasmodium vaccination focus on circumsporozoite-specific CD8 T cell responses in BALB/c mice. However, CD4 T cells and non-circumsporozoite-specific CD8 T cells also significantly contribute to protection. Here we describe alternative approaches that enable detection and functional characterization of total CD8 and CD4 T cell responses induced by preerythrocytic vaccination in mice. These flow cytometry-based approaches rely on monitoring the modulation of expressed integrins and co-receptors on the surface of T cells in vaccinated mice. The approaches enable direct determination of the magnitude, kinetics, distribution, phenotype, and functional features of T cell responses induced by infection or whole-parasite vaccination using any mouse-parasite species combination.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/inmunología , Biología Molecular/métodos , Vacunación/métodos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Eritrocitos/inmunología , Humanos , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/uso terapéutico , Ratones , Plasmodium/inmunología , Plasmodium/patogenicidad , Vacunas Atenuadas/inmunología
9.
Cell Host Microbe ; 17(5): 628-41, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25891357

RESUMEN

The differentiation and protective capacity of Plasmodium-specific T cells are regulated by both positive and negative signals during malaria, but the molecular and cellular details remain poorly defined. Here we show that malaria patients and Plasmodium-infected rodents exhibit atypical expression of the co-stimulatory receptor OX40 on CD4 T cells and that therapeutic enhancement of OX40 signaling enhances helper CD4 T cell activity, humoral immunity, and parasite clearance in rodents. However, these beneficial effects of OX40 signaling are abrogated following coordinate blockade of PD-1 co-inhibitory pathways, which are also upregulated during malaria and associated with elevated parasitemia. Co-administration of biologics blocking PD-1 and promoting OX40 signaling induces excessive interferon-gamma that directly limits helper T cell-mediated support of humoral immunity and decreases parasite control. Our results show that targeting OX40 can enhance Plasmodium control and that crosstalk between co-inhibitory and co-stimulatory pathways in pathogen-specific CD4 T cells can impact pathogen clearance.


Asunto(s)
Diferenciación Celular , Inmunidad Humoral , Malaria/inmunología , Plasmodium/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores OX40/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Ratones
10.
Curr Immunol Rev ; 9(3): 179-189, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24839433

RESUMEN

Parasite-driven dysfunctional adaptive immunity represents an emerging hypothesis to explain the chronic or persistent nature of parasitic infections, as well as the observation that repeated exposure to most parasitic organisms fails to engender sterilizing immunity. This review discusses recent examples from clinical studies and experimental models of parasitic infection that substantiate the role for immune dysfunction in the inefficient generation and maintenance of potent anti-parasitic immunity. Better understanding of the complex interplay between parasites, host adaptive immunity, and relevant negative regulatory circuits will inform efforts to enhance resistance to chronic parasitic infections through vaccination or immunotherapy.

11.
Infect Immun ; 80(12): 4374-87, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23027535

RESUMEN

The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Carbunco/patología , Antígenos Bacterianos/toxicidad , Bacillus anthracis/patogenicidad , Toxinas Bacterianas/toxicidad , Infecciones del Sistema Respiratorio/patología , Actinas/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/microbiología , Animales , Carbunco/microbiología , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Infecciones del Sistema Respiratorio/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...