Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(21): 11460-11466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34328374

RESUMEN

Herein, based on the paramount importance of combating emerging diseases, through employing a detailed in-silico study, the possibility of using MXenes in suppressing the coronavirus infection was elucidated. To this end, first, interactions of MXene nanosheets (Mn2C, Ti2C, and Mo2C) and spike protein (SP), the main infecting portion of the COVID-19, were investigated. It was found that the modeled MXenes were effective in attracting the SP, so that they can be exploited in filtering the coronavirus. In addition, the effect of the MXenes on the SP structure was assessed which demonstrated that the secondary structure of the SP could be changed. Therefore, the post-interactions of the SP/ACE2 (receptor of coronavirus in the body) could be interrupted, declaring the lower chance of coronavirus infecting. The in-silico studies revealed that the MXenes not only can be used to adsorb and hinder the distribution of the coronavirus but also affect the SP structure and the SP/ACE2 interactions to interrupt the COVID-19 threat. Therefore, MXenes can be exploited with simultaneous roles in physical inhibition and reactive weakening of the COVID-19. In this regard, the Mn2C nanosheet was well suited, which is suggested as a promising candidate to combat the coronavirus.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo
2.
Inform Med Unlocked ; 26: 100755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660882

RESUMEN

The COVID-19 pandemic, known as coronavirus pandemic, a global pandemic, emerged from the beginning of 2020 and became dominant in many countries. As COVID-19 is one of the deadliest pandemics in history and has a high rate of distribution, a fast and extensive reaction was needed. Considering its composition, revealing the infection mechanism is beneficial for effective decisions against the spread and attack of COVID-19. Investigating data from numerous studies confirms that the penetration of SARS-CoV-2 occurs along with bonding spike protein (S protein) and through ACE2; Therefore, these two parts were the focus of research on the suppression and control of the infection. Performing lab research on all promising candidates requires years of experimental study, which is time-consuming and not an acceptable solution. Molecular dynamic simulation can decipher the performance of nano-structures in preventing the spread of coronavirus in a shorter time. This study surveyed the effect of three nano-perovskite structures (SrTiO3, CaTiO3, and BaTiO3), a cutting-edge group of perovskite materials with outstanding properties on coronavirus. Various computational parameters evaluate the effectiveness of these structures. Results of the simulation indicated that SrTiO3 performs better in SARS-CoV-2 suppression.

3.
J Mater Sci Mater Med ; 32(5): 49, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33891249

RESUMEN

Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.


Asunto(s)
Fulerenos/química , Riñones Artificiales , Nitrógeno/química , Fósforo/química , Urea/química , Dispositivos Electrónicos Vestibles , Adsorción , Materiales Biocompatibles , Humanos , Ensayo de Materiales , Diálisis Renal
4.
ACS Omega ; 6(9): 6312-6325, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718722

RESUMEN

Materials science can pave the way toward developing novel devices at the service of human life. In recent years, computational materials engineering has been promising in predicting material performance prior to the experiments. Herein, this capability has been carefully employed to tackle severe problems associated with kidney diseases through proposing novel nanolayers to adsorb urea and accordingly causing the wearable artificial kidney (WAK) to be viable. The two-dimensional metal carbide and nitride (MXene) nanosheets can leverage the performance of various devices since they are highly tunable along with fascinating surface chemistry properties. In this study, molecular dynamics (MD) simulations were exploited to investigate the interactions between urea and different MXene nanosheets. To this end, detailed analyses were performed that clarify the suitability of these nanostructures in urea adsorption. The atomistic simulations were carried out on Mn2C, Cd2C, Cu2C, Ti2C, W2C, Ta2C, and urea to determine the most appropriate urea-removing adsorbent. It was found that Cd2C was more efficient followed by Mn2C, which can be effectively exploited in WAK devices at the service of human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA