Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 792: 136955, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347339

RESUMEN

GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Ratones , Animales , Orexinas/metabolismo , Insulina/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas del Tejido Nervioso/metabolismo
2.
Neurosci Lett ; 781: 136660, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35489647

RESUMEN

Currently, up to 35% off all drugs approved for the treatment of human diseases belong to the G-protein-coupled receptor (GPCR) family. Out of the almost 800 existing GPCRs, 25% have no known endogenous ligands and are regarded as orphan receptors; many of these are currently under investigation as potential pharmacological targets. Here, we hypothesised that orphan GPCRs expressed in the hypothalamus could be targets for the treatment of obesity and other metabolic diseases. Using bioinformatic tools, we identified 78 class A orphan GPCRs that are expressed in the hypothalamus of mice. Initially, we selected two candidates and determined their responsivities to nutritional interventions: GPR162, the GPCR with highest expression in the hypothalamus, and GPR68, a GPCR with intermediate expression in the hypothalamus and that has never been explored for its potential involvement in metabolic regulation. GPR162 expression was not modified by fasting/feeding or by the consumption of a high-fat diet, and was therefore not subsequently evaluated. Conversely, GPR68 expression increased in response to the consumption of a high-fat diet and reduced under fasting conditions. Using immunofluorescence, GPR68 was identified in both proopiomelanocortin-expressing and agouti-related peptide-expressing neurons in the hypothalamic arcuate nucleus. Acute inhibition of GPR68 with an allosteric modulator promoted an increase in the expression of the orexigenic agouti-related peptide and neuropeptide Y, whereas 4- and 12-h inhibition of GPR68 resulted in increased caloric intake. Thus, GPR68 has emerged as an orphan GPCR that is expressed in the hypothalamus and is involved in the regulation of feeding.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Hipotálamo , Receptores Acoplados a Proteínas G , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Hipotálamo/metabolismo , Ratones , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
J Neurosci ; 41(48): 10004-10022, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34675088

RESUMEN

Nescient helix-loop-helix 2 (NHLH2) is a hypothalamic transcription factor that controls the expression of prohormone convertase 1/3, therefore having an impact on the processing of proopiomelanocortin and thus on energy homeostasis. Studies have shown that KO of Nhlh2 results in increased body mass, reduced physical activity, and hypogonadism. In humans, a polymorphism of the NHLH2 gene is associated with obesity; and in Prader-Willi syndrome, a condition characterized by obesity, hypogonadism and behavioral abnormalities, the expression of NHLH2 is reduced. Despite clinical and experimental evidence suggesting that NHLH2 could be a good target for the treatment of obesity, no previous study has evaluated the impact of NHLH2 overexpression in obesity. Here, in mice fed a high-fat diet introduced right after the arcuate nucleus intracerebroventricular injection of a lentivirus that promoted 40% increase in NHLH2, there was prevention of the development of obesity by a mechanism dependent on the reduction of caloric intake. When hypothalamic overexpression of NHLH2 was induced in previously obese mice, the beneficial impact on obesity-associated phenotype was even greater; thus, there was an 80% attenuation in body mass gain, reduced whole-body adiposity, increased brown adipose tissue temperature, reduced hypothalamic inflammation, and reduced liver steatosis. In this setting, the beneficial impact of hypothalamic overexpression of NHLH2 was a result of combined effects on caloric intake, energy expenditure, and physical activity. Moreover, the hypothalamic overexpression of NHLH2 reduced obesity-associated anxiety/depression behavior. Thus, we provide an experimental proof of concept supporting that hypothalamic NHLH2 is a good target for the treatment of obesity.SIGNIFICANCE STATEMENT Obesity is a highly prevalent medical condition that lacks an effective treatment. The main advance provided by this study is the demonstration of the beneficial metabolic and behavioral outcomes resulting from the overexpression of NHLH2 in the hypothalamus. When NHLH2 was overexpressed simultaneously with the introduction of a high-fat diet, there was prevention of obesity by a mechanism dependent on reduced caloric intake. Conversely, when NHLH2 was overexpressed in previously obese mice, there was reduction of the obese phenotype because of a combination of reduced caloric intake, increased physical activity, and increased thermogenesis. In addition, the overexpression of NHLH2 reduced anxiety/depression-like behavior. Thus, NHLH2 emerges as a potential target for the combined treatment of obesity and its associated anxiety/depression-like behavior.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Obesidad/metabolismo , Animales , Ansiedad/metabolismo , Índice de Masa Corporal , Depresión/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Obesidad/psicología
4.
Sci Rep ; 10(1): 11047, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632088

RESUMEN

Hypothalamic adult neurogenesis provides the basis for renewal of neurons involved in the regulation of whole-body energy status. In addition to hormones, cytokines and growth factors, components of the diet, particularly fatty acids, have been shown to stimulate hypothalamic neurogenesis; however, the mechanisms behind this action are unknown. Here, we hypothesized that GPR40 (FFAR1), the receptor for medium and long chain unsaturated fatty acids, could mediate at least part of the neurogenic activity in the hypothalamus. We show that a GPR40 ligand increased hypothalamic cell proliferation and survival in adult mice. In postnatal generated neurospheres, acting in synergy with brain-derived neurotrophic factor (BDNF) and interleukin 6, GPR40 activation increased the expression of doublecortin during the early differentiation phase and of the mature neuronal marker, microtubule-associated protein 2 (MAP2), during the late differentiation phase. In Neuro-2a proliferative cell-line GPR40 activation increased BDNF expression and p38 activation. The chemical inhibition of p38 abolished GPR40 effect in inducing neurogenesis markers in neurospheres, whereas BDNF immunoneutralization inhibited GPR40-induced cell proliferation in the hypothalamus of adult mice. Thus, GPR40 acts through p38 and BDNF to induce hypothalamic neurogenesis. This study provides mechanistic advance in the understating of how a fatty acid receptor regulates adult hypothalamic neurogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Neurogénesis/fisiología , Receptores Acoplados a Proteínas G/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hipotálamo/efectos de los fármacos , Imidazoles/farmacología , Interleucina-6/fisiología , Ligandos , Masculino , Metilaminas/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Propionatos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...