Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Neurol Neurosurg ; 237: 108158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330802

RESUMEN

Charcot-Marie-Tooth disease type 2P (CMT2P; MIM #614436) is a specific type of axonal neuropathy caused by mutations in the LRSAM1 gene, which is a RING-type E3 ubiquitin ligase. CMT2P can be inherited in two ways: as an autosomal dominant or autosomal recessive trait. In this report, we describe the clinical characteristics of a family with axonal sensory-motor neuropathy caused by a new variant of the LSRAM1 gene, which is associated with early-onset autosomal dominant CMT2P.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Mutación/genética , Fenotipo , Ubiquitina-Proteína Ligasas/genética
2.
Hum Mol Genet ; 33(9): 768-786, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38280232

RESUMEN

In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Autosómica Dominante , Humanos , Atrofia Óptica Autosómica Dominante/genética , Mutación , Autofagia/genética , Fibroblastos , GTP Fosfohidrolasas/genética
3.
Hum Mol Genet ; 32(2): 333-350, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994048

RESUMEN

Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Mitocondriales , Animales , Proliferación Celular/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Humanos
4.
Stem Cell Res ; 65: 102946, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272304

RESUMEN

Charcot-Marie-Tooth type 4B3 (CMT4B3) is a rare subtype of hereditary neuropathy associated with variants in the MTMR5/SBF1 gene. Herein, we report the generation and characterization of a hiPSC line from a 12-year-old Italian girl with early onset severe polyneuropathy with motor and axonal involvement, harboring biallelic variants in the MTMR5/SBF1 gene. Fibroblasts were reprogrammed using non-integrating episomal plasmids, and iPSCs successfully passed the stemness and pluripotency tests. Patient-specific hiPSCs were produced to obtain a disease model for the study of this rare condition.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Péptidos y Proteínas de Señalización Intracelular , Células Madre Pluripotentes , Niño , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Femenino , Enfermedad de Charcot-Marie-Tooth/genética , Línea Celular
5.
Acta Myol ; 41(4): 201-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36793649

RESUMEN

Objective: Mitofusin 2 (MFN2) is a mitochondrial outer membrane protein that serves primarily as a mitochondrial fusion protein but has additional functions including the tethering of mitochondrial-endoplasmic reticulum membranes, movement of mitochondria along axons, and control of the quality of mitochondria. Intriguingly, MFN2 has been referred to play a role in regulating cell proliferation in several cell types such that it acts as a tumour suppressor role in some forms of cancer. Previously, we found that fibroblasts derived from a Charcot-Marie-Tooth disease type 2A (CMT2A) patient with a mutation in the GTPase domain of MFN2 exhibit increased proliferation and decreased autophagy. Methods: Primary fibroblasts from a young patient affected by CMT2A harbouring c.650G > T/p.Cys217Phe mutation in the MFN2 gene were evaluated versus a healthy control to measure the proliferation rate by growth curves analysis and to assess the phosphorylation of protein kinase B (AKT) at Ser473 in response to different doses of torin1, a selective catalytic ATP-competitive mammalian target of rapamycin complex (mTOR) inhibitor, by immunoblot analysis. Results: Herein, we demonstrated that the mammalian target of rapamycin complex 2 (mTORC2) is highly activated in the CMT2AMFN2 fibroblasts to promote cell growth via the AKT(Ser473) phosphorylation-mediated signalling. We report that torin1 restores CMT2AMFN2 fibroblasts' growth rate in a dose-dependent manner by decreasing AKT(Ser473) phosphorylation. Conclusions: Overall, our study provides evidence for mTORC2, as a novel molecular target that lies upstream of AKT to restore the cell proliferation rate in CMT2A fibroblasts.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas Proto-Oncogénicas c-akt/genética , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Serina-Treonina Quinasas TOR/genética , Proliferación Celular/genética , GTP Fosfohidrolasas/genética
6.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361091

RESUMEN

Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.


Asunto(s)
Encefalopatías/patología , Metabolismo Energético , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Fosforilación Oxidativa , Animales , Encefalopatías/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...