Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Craniofac Surg ; 33(3): 956-961, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34456284

RESUMEN

OBJECTIVES: To investigate whether and how the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) sponges microRNA-96 (miR-96) to achieve the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). METHODS: Protein levels were detected by Western blot. Mineralized bone matrix formation was studied by alizarin red staining. Metastasis-associated lung adenocarcinoma transcript 1, miR-96, and osteogenesis-related Messenger RNA expression was assessed by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The interactions between miR-96 and osterix (Osx), MALAT1, and miR-96 were determined by luciferase reporter assay. RESULTS: The expression of MALAT1 was upregulated whereas that of miR-96 was downregulated in osteogenic hBMSCs. In addition, the expression of MALAT1 significantly decreased whereas that of miR-96 increased in the hBMSCs of osteoporosis (OP) patients. qRT-PCR and alizarin red staining assays showed that MALAT1 silencing or miR-96 overexpression inhibits hBMSC osteogenic differentiation and vice versa. overexpression of miR-96 reversed the promotive effect of MALAT1 on the osteogenic differentiation of hBMSCs. Dual luciferase report assay verified that miR-96 is a regulatory target of MALAT1 and that Osx is a gene target of miR-96. CONCLUSIONS: Taken together, the results demonstrate that MALAT1 promotes the osteogenic differentiation of hBMSCs by regulating the miR-96/Osx axis. Our study provides novel mechanistic insights into the critical role of lncRNA MALAT1 as a microRNA sponge in OP patients and sheds new light on lncRNA-directed diagnostics and therapeutics in OP.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoblastos , Osteoporosis , ARN Largo no Codificante , Factor de Transcripción Sp7 , Médula Ósea , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Osteoblastos/citología , Osteogénesis/genética , ARN Largo no Codificante/genética , Factor de Transcripción Sp7/genética
2.
J Biomed Mater Res B Appl Biomater ; 108(8): 3402-3412, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32618100

RESUMEN

Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation. The sinus space-keeping capacity, resorption rate, osteoconductivity, and mechanical properties of regenerated bone, were evaluated by micro-computed tomography (CT), histological analysis, and mechanical testing. Sr-DCPD exhibited the best osteoconductivity and new bone formation (<4 weeks), but its final bone regeneration and removal torque of implants at week 12 were the lowest, mainly due to its poor space-keeping capacity and fast resorption. bHA exhibited the best space-keeping capacity and slowest resorption rate, but relative lower final bone volume and mechanical properties, while sHA showed good space-keeping capacity, slower resorption rate, and the best final bone formation and mechanical properties. sHA was most effective for SA and bHA was also an acceptable bone substitute; however, Sr-DCPD was least effective and not suitable in SA by itself.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos/química , Fosfatos de Calcio/farmacología , Durapatita/farmacología , Elevación del Piso del Seno Maxilar/métodos , Estroncio/farmacología , Animales , Conducción Ósea , Regeneración Ósea/efectos de los fármacos , Resorción Ósea , Fosfatos de Calcio/química , Bovinos , Durapatita/química , Humanos , Masculino , Seno Maxilar/cirugía , Fenómenos Mecánicos , Persona de Mediana Edad , Osteogénesis/efectos de los fármacos , Prótesis e Implantes , Conejos , Estroncio/química , Microtomografía por Rayos X
3.
Mol Cell Endocrinol ; 508: 110791, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32173349

RESUMEN

Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation. CaMKII (δ) gene silencing significantly inhibited osteoclast formation, bone resorption, and expression of osteoclast-related genes, including nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and c-Src. Furthermore, CaMKII (δ) gene silencing downregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which were transiently activated by RANKL. Specific inhibitors of ERK, JNK, and p38 also markedly inhibited expression of osteoclast-related genes, osteoclast formation, and bone resorption like CaMKII (δ) gene silencing. Additionally, CaMKII (δ) gene silencing also suppressed RANKL-triggered CREB phosphorylation. Collectively, these data demonstrate the important role of CaMKII (δ) in osteoclastogenesis regulation through JNK, ERK, and p38 MAPKs and CREB pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Resorción Ósea/genética , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Silenciador del Gen/efectos de los fármacos , Ratones , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ligando RANK/farmacología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Fosfatasa Ácida Tartratorresistente/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...