Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychologia ; 181: 108493, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36707024

RESUMEN

The neural markers for individual differences in mathematical achievement have been studied extensively using magnetic resonance imaging; however, high temporal resolution electrophysiological evidence for individual differences in mathematical achievement require further elucidation. This study evaluated the event-related potential (ERP) when 48 college students with high or low mathematical achievement (HA vs. LA) matched non-symbolic and symbolic rational numbers. Behavioral results indicated that HA students had better performance in the discretized non-symbolic matching, although the two groups showed similar performances in the continuous matching. ERP data revealed that even before non-symbolic stimulus presentation, HA students had greater Bereitschaftspotential (BP) amplitudes over posterior central electrodes. After the presentation of non-symbolic numbers, HA students had larger N1 amplitudes at 160 ms post-stimulus, over left-lateralized parieto-occipital electrodes. After the presentation of symbolic numbers, HA students displayed more profound P1 amplitudes at 100 ms post-stimulus, over left parietal electrodes. Furthermore, larger BP and N1 amplitudes were associated with the shorter reaction times, and larger P1 amplitudes corresponded to lower error rates. The BP effect could indicate preparation processing, and early left-lateralized N1 and P1 effects could reflect the non-symbolic and symbolic number processing along the dorsal neural pathways. These results suggest that the left-lateralized P1 and N1 components elicited by matching non-symbolic and symbolic rational numbers can be considered as neurocognitive markers for individual differences in mathematical achievement.


Asunto(s)
Potenciales Evocados , Individualidad , Humanos , Potenciales Evocados/fisiología , Tiempo de Reacción/fisiología , Matemática
2.
Front Hum Neurosci ; 16: 774921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211000

RESUMEN

Autism spectrum disorder (ASD) is a group of complex neurodevelopment disorders characterized by altered brain connectivity. However, the majority of neuroimaging studies for ASD focus on the static pattern of brain function and largely neglect brain activity dynamics, which might provide deeper insight into the underlying mechanism of brain functions for ASD. Therefore, we proposed a framework with Hidden Markov Model (HMM) analysis for resting-state functional MRI (fMRI) from a large multicenter dataset of 507 male subjects. Specifically, the 507 subjects included 209 subjects with ASD and 298 well-matched health controls across 14 sites from the Autism Brain Imaging Data Exchange (ABIDE). Based on the HMM, we can identify the recurring brain function networks over time across ASD and healthy controls (HCs). Then we assessed the dynamical configuration of the whole-brain networks and further analyzed the community structure of transitions across the brain states. Based on the 19 HMM states, we found that the global temporal statistics of the specific HMM states (including fractional occupancies and lifetimes) were significantly altered in ASD compared to HCs. These specific HMM states were characterized by the activation pattern of default mode network (DMN), sensory processing networks [including visual network, auditory network, and sensory and motor network (SMN)]. Meanwhile, we also find that the specific modules of transitions between states were closely related to ASD. Our findings indicate the temporal reconfiguration of the brain network in ASD and provide novel insights into the dynamics of the whole-brain networks for ASD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...