Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 11(1): 238, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924150

RESUMEN

BACKGROUND: Minimizing mortality losses due to multiple stress and obtaining maximum performance are the production goals for newly received cattle. In recent years, vaccination and metaphylaxis treatment significantly decreased the mortality rate of newly received cattle, while the growth block induced by treatment is still obvious. Assessment of blood metabolites and behavior monitoring offer potential for early identification of morbid animals. Moreover, the ruminal microorganisms' homeostasis is a guarantee of beef steers' growth and health. The most critical period for newly received cattle is the first-month post-transport. Therefore, analyzing rumen metagenomics, rumen metabolomics, host metabolomics, and their interaction during receiving period (1 day before transport and at days 1/4, 16, and 30 after transport) is key to revealing the mechanism of growth retardation, and then to formulating management and nutritional practices for newly received cattle. RESULTS: The levels of serum hormones (COR and ACTH), and pro-inflammatory factors (IL-1ß, TNF-α, and IL-6) were highest at day 16, and lowest at day 30 after arrival. Meanwhile, the antioxidant capacity (SOD, GSH-Px, and T-AOC) was significantly decreased at day 16 and increased at day 30 after arrival. Metagenomics analysis revealed that rumen microbes, bacteria, archaea, and eukaryota had different trends among the four different time points. At day 16 post-transport, cattle had a higher abundance of ruminal bacteria and archaea than those before transport, but the eukaryote abundance was highest at day 30 post-transport. Before transport, most bacteria were mainly involved in polysaccharides digestion. At day 4 post-transport, the most significantly enriched KEGG pathways were nucleotide metabolism (pyrimidine metabolism and purine metabolism). At day 16 post-transport, the energy metabolism (glycolysis/gluconeogenesis, pyruvate metabolism) and ruminal contents of MCP and VFAs were significantly increased, but at the same time, energy loss induced by methane yields (Methanobrevibacter) together with pathogenic bacteria (Saccharopolyspora rectivirgula) were also significantly increased. At this time, the most upregulated ruminal L-ornithine produces more catabolite polyamines, which cause oxidative stress to rumen microbes and their host; the most downregulated ruminal 2',3'-cAMP provided favorable growth conditions for pathogenic bacteria, and the downregulated ruminal vitamin B6 metabolism and serum PC/LysoPC disrupt immune function and inflammation reaction. At day 30 post-transport, the ruminal L-ornithine and its catabolites (mainly spermidine and 1,3-propanediamine) were decreased, and the serum PC/LysoPC and 2',3'-cNMPs pools were increased. This is also consistent with the changes in redox, inflammation, and immune status of the host. CONCLUSIONS: This study provides new ideas for regulating the health and performance of newly received cattle during the receiving period. The key point is to manage the newly received cattle about day 16 post-transport, specifically to inhibit the production of methane and polyamines, and the reproduction of harmful bacteria in the rumen, therefore improving the immunity and performance of newly received cattle. Video Abstract.


Asunto(s)
Dieta , Microbiota , Bovinos , Animales , Dieta/veterinaria , Rumen/microbiología , Bacterias/genética , Bacterias/metabolismo , Archaea/metabolismo , Inflamación/metabolismo , Metano/metabolismo , Ornitina/metabolismo , Poliaminas/metabolismo , Alimentación Animal/análisis , Fermentación
2.
Animals (Basel) ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38200851

RESUMEN

The challenge of wheat straw as a ruminant feed is its low ruminal digestibility. This study investigated the impact of a xylanase called RuXyn, derived from the rumen metagenome of beef cattle, on the in vitro ruminal fermentation of wheat straw. RuXyn encoded 505 amino acids and was categorized within subfamily 8 of the glycosyl hydrolase 30 family. RuXyn was heterologously expressed in Escherichia coli and displayed its highest level of activity at pH 6.0 and 40 °C. RuXyn primarily hydrolyzed xylan, while it did not show any noticeable activity towards other substrates, including carboxymethylcellulose and Avicel. At concentrations of 5 mM, Mn2+ and dithiothreitol significantly enhanced RuXyn's activity by 73% and 20%, respectively. RuXyn's activity was almost or completely inactivated in the presence of Cu2+, even at low concentrations. The main hydrolysis products of corncob xylan by RuXyn were xylopentose, xylotriose, and xylotetraose. RuXyn hydrolyzed wheat straw and rice straw more effectively than it did other agricultural by-products. A remarkable synergistic effect was observed between RuXyn and a cellulase cocktail on wheat straw hydrolysis. Supplementation with RuXyn increased dry matter digestibility; acetate, propionate, valerate, and total volatile fatty acid yields; NH3-N concentration, and total bacterial number during in vitro fermentation of wheat straw relative to the control. RuXyn's inactivity at 60 °C and 70 °C was remedied by mutating proline 151 to phenylalanine and aspartic acid 204 to leucine, boosting activity to 20.3% and 21.8% of the maximum activity at the respective temperatures. As an exogenous enzyme preparation, RuXyn exhibits considerable potential to improve ruminal digestion and the utilization of wheat straw in ruminants. As far as we know, this is the first study on a GH30 xylanase promoting the ruminal fermentation of agricultural straws. The findings demonstrate that the utilization of RuXyn can significantly enhance the ruminal digestibility of wheat straw by approximately 10 percentage points. This outcome signifies the emergence of a novel and highly efficient enzyme preparation that holds promise for the effective utilization of wheat straw, a by-product of crop production, in ruminants.

3.
Food Chem ; 389: 133129, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35526291

RESUMEN

Slightly acidic electrolyzed water (SAEW) is often used on eggs to remove microorganisms, but the cuticle will be damaged, causing bacterial invasion and deterioration of egg quality during preservation. Therefore, a combination of SAEW disinfection with chitosan (CS) and pectin (PT) composite coating (CS + PT) was tried in preventing bacterial invasion and prolonging the shelf life of eggs. The results showed the order of decontamination effectiveness on contaminated eggs was SAEW > Electrolyzed reduced water (ERW) + SAEW > ERW > deionized water. The CS + PT coating used on SAEW-disinfected eggs inhibits the S. enteritidis invasion (reduced by 63.3%) and was successfully used to maintain the quality of eggs (Haugh unit 48.63, Weight loss 7.34%, Yolk index 0.29, pH 8.93) after 8 weeks storage at 25 ℃. The results revealed that the combination of SAEW and CS + PT was a very promising method for egg preservation.


Asunto(s)
Quitosano , Ácidos , Quitosano/farmacología , Huevos , Electrólisis , Concentración de Iones de Hidrógeno , Pectinas , Salmonella enteritidis , Agua/química
4.
Int J Biol Macromol ; 199: 341-347, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35026222

RESUMEN

The current study displayed a xylanase from Lentinula edodes on the surface of Pichia pastoris (sdLeXyn) and investigated its properties and effects on the wheat hydrolysis. Fluorescence microscope results showed that sdLeXyn was successfully anchored and displayed on the surface of P. pastoris X-33 cells. The highest activity of sdLeXyn was obtained at pH 3.0 and 50 °C. The sdLeXyn exhibited anti-high temperature property and showed broad temperature adaptability (>55% of the highest activity at 20-80 °C). The sdLeXyn was very stable at room temperature and could remain functionally stable at 50 °C for 3 h. The Km value was greater in sdLeXyn than that in free recombinant L. edodes xylanase. The sdLeXyn exhibited well resistance to Mn2+, Zn2+, Ca2+, Na+, Cu2+, Mg2+, K+, Ni2+ (1 mM and 5 mM) except Cu2+, which reduced the sdLeXyn activity by 54.5% at 5 mM dosage. The activity of sdLeXyn was increased by 42.6% by 5 mM Mn2+, 5 mM DTT, Trition X-100, and Tween 20 did not affect the activity of sdLeXyn, but SDS and EDTA slightly reduced it by 12.8% and 14.6%, respectively. The sdLeXyn could resist the degradation of pepsin, efficiently hydrolyzed wheat and reduced the viscosity of wheat hydrolysate. Current data indicate that the sdLeXyn has a potential as a feed additive to improve the utilization of wheat in poultry production.


Asunto(s)
Hongos Shiitake , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Triticum/metabolismo
5.
BMC Vet Res ; 18(1): 35, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033088

RESUMEN

BACKGROUND: The fasting and stress associated with road transportation contributes to a lack of energy and a decline in the immune system of beef cattle. Therefore, it is essential for beef cattle to enhance energy reserves before transportation. Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine, which are two intermediate products of energy metabolism. To investigate the effects of transport and rumen-protected (RP)-CrPyr on the blood biochemical parameters and rumen fluid characteristics of beef cattle, twenty male Simmental crossbred cattle (659 ± 16 kg) aged 18 months were randomly allocated to four groups (n = 5) using a 2 × 2 factorial arrangement with two RP-CrPyr supplemental levels (0 or 140 g/d) and two transport treatments (5 min or 12 h): T_CrPyr140, T_CrPyr0, NT_CrPyr140, and NT_CrPyr0. After feeding for 30 days, three cattle per treatment were slaughtered. RESULTS: Compared with nontransport, transport decreased the total antioxidant capacity, catalase activity, contents of IgA, interferon γ, interleukin-1ß (IL-1ß), and IL-6 in serum, and the amounts of total volatile fatty acids (TVFA), acetate, and butyrate in rumen (P < 0.05); increased the serum lipopolysaccharide (LPS) level, contents of rumen LPS and ammonia nitrogen (P < 0.05). RP-CrPyr supplementation decreased the levels of cortisol and LPS in serum and the butyrate concentration in the rumen of beef cattle compared with those in the unsupplemented groups (P < 0.05). RP-CrPyr and transport interaction had a significant effect on the contents of serum tumour necrosis factor-α, IL-6, LPS, ruminal pH, acetate content, and acetate/propionate (P < 0.05). In terms of ruminal bacterial composition, group T_CrPyr0 increased the Prevotella genus abundance compared with group NT_CrPyr0 (P < 0.05), while group T_CrPyr140 increased Firmicutes phylum abundance and decreased Bacteroidetes phylum and genus Prevotella abundance compared with group T_CrPyr0 (P < 0.05). Moreover, Bacteroidetes was positively correlated with serum LPS. CONCLUSIONS: These results indicated that dietary supplementation with RP-CrPyr might be beneficial to alleviate transport stress by decreasing serum cortisol and LPS levels and promoting the restoration of the rumen natural flora.


Asunto(s)
Creatina , Suplementos Dietéticos , Ácido Pirúvico , Rumen , Acetatos , Alimentación Animal/análisis , Animales , Butiratos , Bovinos , Creatina/administración & dosificación , Dieta/veterinaria , Fermentación , Hidrocortisona/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Masculino , Prevotella , Ácido Pirúvico/administración & dosificación , Rumen/metabolismo
6.
Meat Sci ; 183: 108643, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34390897

RESUMEN

Slightly acidic electrolyzed water (SAEW) is often used as a disinfectant in beef preservation to ensure microbiological safety. However, it ineffectively inhibit lipid oxidation. Therefore, the combination of SAEW and tea polyphenols (TPs) was tested to inhibit lipid oxidation and microbial growth in beef preservation. SAEW and TPs were selected as the optimum sanitizer and antioxidant, respectively. Then, the inactivation efficacies of different combination treatments of SAEW and TPs of Salmonella enteritidis in beef were compared and treatment of SAEW-TPs (SAEW immersion at an available chlorine concentration of 30 mg/L for 2.5 min, followed by the TPs immersion at a 0.1% concentration for 2.5 min) was selected. Finally, the effectiveness of SAEW-TPs on the microbiological and physicochemical properties of beef during storage was evaluated. The results revealed that the required quality standard of beef treated with SAEW-TPs was prolonged by approximately 9 d at 4 °C, and this treatment had greater antimicrobial and antioxidant effects than did the single treatment.


Asunto(s)
Desinfectantes/farmacología , Conservación de Alimentos/métodos , Polifenoles/farmacología , Carne Roja/análisis , Animales , Bovinos , Lípidos , Oxidación-Reducción , Carne Roja/microbiología , Salmonella enteritidis/efectos de los fármacos , Hipoclorito de Sodio/farmacología , Té/química , Agua/química
7.
Front Microbiol ; 12: 715088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512594

RESUMEN

Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine. It has been shown to relieve the heat stress of beef cattle by improving antioxidant activity and rumen microbial protein synthesis, but the mechanism of CrPyr influencing rumen fermentation remains unclear. This study aimed to combine 16S rDNA sequencing and metaproteomics technologies to investigate the microbial composition and function in rumen fluid samples taken from heat-stressed beef cattle treated with or without 60 g/day CrPyr. 16S rDNA sequencing revealed that there were no significant differences in the α-diversity indices between the two groups. By analyzing the level profiles of 700 distinct proteins, we found that the CrPyr administration increased the expression of enzymes involved in specific metabolic pathways including (i) fatty acid ß-oxidation; (ii) interconversion from pyruvate to phosphoenolpyruvate, oxaloacetate, acetyl-CoA, and malate; (iii) glycolysis/gluconeogenesis and citrate cycle metabolism; and (iv) biosynthesis of amino acids. These results indicated that the increased generation of adenosine triphosphate during fatty acid ß-oxidation or citrate cycle and the up-regulation synthesis of microbial protein in rumen of beef cattle treated with CrPyr may help decrease oxidative stress, regulate energy metabolism, and further improve the rumen fermentation characteristic under heat stress.

8.
Int J Biol Macromol ; 171: 382-388, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33434547

RESUMEN

The current study heterologously expressed a cutinase from Fusarium verticillioides by Pichia pastoris and investigated its properties and effects on the hydrolysis of rice straw. The optimal pH and temperature for F. verticillioides cutinase were 8.0 and 50 °C, respectively. F. verticillioides cutinase had poor thermal stability and could be inhibited by some metal ions, inhibitors, and detergents (5 mM), including Ni2+, Zn2+, Cu2+, Ca2+, Mn2+, sodium dodecyl sulfate, EDTA, and Tween-20. F. verticillioides cutinase could tolerate 15% methanol and dimethyl sulfoxide but was significantly repressed by 15% ethanol and acetone with 48% and 63% residual activity, respectively. F. verticillioides cutinase could degrade the cuticle of rice straw with palmitic acid and stearic acid as the main products. However, the dissolving sugars released from the rice straw treated with F. verticillioides cutinase were significantly reduced by 29.2 µg/mL compared with the control (107.9 µg/mL). Similarly, the reducing sugars produced from the cellulase hydrolysis of rice straw pretreated with F. verticillioides cutinase were reduced by 63.5 µg/mL relative to the control (253.6 µg/mL). Scanning electron microscopy results showed that numerous tuberculate or warty protrusions were present nearly everywhere on the surface of rice straw treated with F. verticillioides cutinase, and some protrusions even covered and blocked the stomata of the rice straw surface. Current limited data indicate that F. verticillioides cutinase might not be an appropriate choice for improving the utilization of agricultural straws.


Asunto(s)
Hidrolasas de Éster Carboxílico/farmacología , Proteínas Fúngicas/farmacología , Fusarium/enzimología , Oryza , Tallos de la Planta/efectos de los fármacos , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/genética , Celulasa/farmacología , Detergentes/farmacología , Ácidos Grasos/aislamiento & purificación , Fermentación , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Microbiología Industrial/métodos , Metales/farmacología , Oryza/química , Tallos de la Planta/química , Proteínas Recombinantes/farmacología , Solventes/farmacología , Azúcares/aislamiento & purificación
9.
J Sci Food Agric ; 101(6): 2355-2361, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33006379

RESUMEN

BACKGROUND: Slightly acidic electrolyzed water (SAEW) has been shown to offer a promising alternative for the inactivation of bacteria on egg surfaces, but the cuticle of the egg is damaged during this disinfection process. However, if SAEW disinfection is followed by chitosan (CS) coating treatment, this will construct a new membrane and prevent the loss of moisture and carbon dioxide through the damaged cuticle. Hence, the objective of this study was to investigate the efficacy of SAEW disinfection followed by CS coating treatment for improving the internal quality of eggs during 6 weeks of storage at 25 °C. RESULTS: Scanning electron microscopy revealed that SAEW-treated eggs had deeper and wider cracks than control eggs stored between 0 and 21 days. Moreover, the depth and width of the cracks in the uncoated eggs increased as storage time increased. However, the CS coating method was successfully used on SAEW-disinfected eggs to construct a barrier against the negative effects of shell damage. After 6 weeks of storage at 25 °C, the yolk index, albumen pH, Haugh unit value and weight loss value of the SAEW + CS group were 0.31%, 9.01%, 63.72% and 5.35%, respectively. CONCLUSIONS: A combination of SAEW and CS was more effective at maintaining internal egg quality than SAEW or CS treatments alone during storage. © 2020 Society of Chemical Industry.


Asunto(s)
Quitosano/química , Desinfección/métodos , Huevos/análisis , Agua/química , Animales , Pollos , Quitosano/farmacología , Desinfectantes/química , Desinfectantes/farmacología , Desinfección/instrumentación , Electrólisis , Concentración de Iones de Hidrógeno , Agua/farmacología
10.
Food Sci Nutr ; 6(7): 1975-1981, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30349688

RESUMEN

Studies on slightly acidic electrolyzed water (SAEW) for decontamination and shelf life extension of beef are limited. This study aimed to evaluate the effects of SAEW and tea polyphenols (Tpp) on the microbiological, physicochemical, and sensory qualities of fresh beef during storage. The changes in total viable count, thiobarbituric acid content, pH, total volatile basic nitrogen, and sensory scores revealed that the required quality standard of the beef treated with distilled water, Tpp, and SAEW was maintained for up to 6-8, 12-14, and 14-16 days, respectively. These results demonstrated that SAEW could effectively extend the shelf life of beef in comparison with that of other treatments. However, there were no significant differences (p > 0.05) between the untreated and SAEW-treated group in the content of thiobarbituric acid, suggesting that SAEW does not possess antioxidant activity. Therefore, further studies are required to increase its antioxidant activity. This study suggests that SAEW treatment is an effective and promising method to prolong the shelf life of beef by around 8 days at 4°C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...