Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 1): 130229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378110

RESUMEN

Microbial glycosyltransferases efficiently synthesize glucosides and have garnered increasing interest. However, limited regioselectivity has impeded their broad application, particularly in the pharmaceutical industry. In this study, the UDP-glycosyltransferase YjiC from Bacillus licheniformis (BlYjiC) was engineered to achieve the bidirectional regioselective glycosylation of tyrosol and its derivatives. Initially, site-directed saturation mutagenesis was performed on two newly identified substrate-binding cavities in the acceptor pocket of BlYjiC to provide a comprehensive blueprint of the interplay between mutations and function (mutability landscape). Iterative saturation mutagenesis was performed, guided by the mutability landscape. Two highly regioselective mutants M6 (M112L/I325Y/L70R/Q136E/I67E/M77R) and M2' (M112D/I62L) were generated, exhibiting >99 % regioselectivity toward the alcoholic and phenolic hydroxyl of tyrosol, respectively, compared with the wild-type (product mixture: 51:49 %). Both mutants exhibited excellent regioselectivity toward several dihydroxy phenolic substrates, offering valuable biocatalysts for the regioselective synthesis of glucosides. Their application was confirmed in a short synthesis of salidroside (3.6 g/L) and icariside D2 (2.4 g/L), which exhibited near-perfect regioselectivity. This study provides valuable insights into future protein engineering of similar enzymes and opens new avenues for their practical applications.


Asunto(s)
Glucósidos , Glicosiltransferasas , Fenoles , Alcohol Feniletílico/análogos & derivados , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Glicosilación , Glucósidos/metabolismo
2.
Org Biomol Chem ; 22(5): 932-939, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38180250

RESUMEN

A rapid and mild protocol for the exhaustive deoxygenation of various aromatic ketones to corresponding alkanes was described, which was mediated by TiCl4 and used ammonia borane (AB) as the reductant. This reduction protocol applies to a wide range of substrates in moderate to excellent yields at room temperature. The gram-scale reaction and syntheses of some key building blocks for SGLT2 inhibitors demonstrated the practicability of this methodology. Preliminary mechanistic studies revealed that the ketone is first converted into an alcohol, which then undergoes a carbocation to give the alkane via hydrogenolysis.

3.
Biotechnol Lett ; 46(2): 173-181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184486

RESUMEN

OBJECTIVE: Salidroside is an important plant-derived aromatic compound with diverse biological properties. The main objective of this study was to synthesize salidroside from tyrosol using UDP-glucosyltransferase (UGT) with in situ regeneration of UDP-glucose (UDPG). RESULTS: The UDP-glucosyltransferase 85A1 (UGT85A1) from Arabidopsis thaliana, which showed high activity and regioselectivity towards tyrosol, was selected for the production of salidroside. Then, an in vitro cascade reaction for in situ regeneration of UDPG was constructed by coupling UGT85A1 to sucrose synthase from Glycine max (GmSuSy). The optimal UGT85A1-GmSuSy activity ratio of 1:2 was determined to balance the efficiency of salidroside production and UDP-glucose regeneration. Different cascade reaction conditions for salidroside production were also determined. Under the optimized condition, salidroside was produced at a titer of 6.0 g/L with a corresponding molar conversion of 99.6% and a specific productivity of 199.1 mg/L/h in a continuous feeding reactor. CONCLUSION: This is the highest salidroside titer ever reported so far using biocatalytic approach.


Asunto(s)
Glucósidos , Glucosiltransferasas , Fenoles , Alcohol Feniletílico/análogos & derivados , Uridina Difosfato Glucosa , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Biocatálisis , Glucosa
4.
J Biotechnol ; 382: 37-43, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244699

RESUMEN

Keratinase, a vital enzyme in hair degradation, requires enhanced stability for industrial applications in the harsh reaction environment used for keratin hydrolysis. Previous studies have focused on improving keratinase thermostability. In this study, directed evolution was applied to enhance the organic solvent stability of the keratinase BLk from Bacillus licheniformis. Three mutants were identified, exhibiting significant enhanced stability in various solvents, although no similar improvements were observed in terms of thermostability. The identified mutations were located on the enzyme surface. The half-lives of the D41A, A24E, and A24Q mutants increased by 47-, 63-, and 61-fold, respectively, in the presence of 50% (v/v) acetonitrile compared to that of the wild type (WT). Similarly, in the presence of 50% (v/v) acetone, the half-lives of these mutants increased by 22-, 27-, and 27-fold compared to that of the WT enzyme. Notably, the proteolytic activity of all the selected mutants was similar to that of the WT enzyme. Furthermore, molecular dynamics simulation was used to assess the possible reasons for enhanced solvent stability. These results suggest that heightened intramolecular interactions, such as hydrogen bonding and hydrophobic interactions, contribute to improved solvent tolerance. The mutants obtained in this study hold significant potential for industrial applications.


Asunto(s)
Péptido Hidrolasas , Solventes/química , Péptido Hidrolasas/metabolismo , Mutación , Hidrólisis , Estabilidad de Enzimas , Temperatura
5.
J Chem Inf Model ; 62(12): 3123-3132, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35679529

RESUMEN

ATP citrate lyase (ACLY) is an important metabolic enzyme involved in the synthesis of fatty acid and cholesterol. The inhibition of ACLY is considered as a promising therapeutic strategy for various metabolic diseases and numerous malignancies. In this study, a novel macrocyclic compound 2 has been identified as a potent ACLY inhibitor with the "ring closing" strategy for conformational restriction based on NDI-091143. It showed potent ACLY inhibitory activity and binding affinity comparable to the positive control. Furthermore, compared with the positive control (T1/2 = 3.36 min), the metabolic stability of 2 in HLMs (T1/2 = 531.22 min) was significantly improved. All of these results characterized 2 as a promising lead compound worthy of further study.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Neoplasias , ATP Citrato (pro-S)-Liasa/química , ATP Citrato (pro-S)-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/metabolismo
6.
Org Biomol Chem ; 20(19): 3930-3939, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35504030

RESUMEN

A series of indole-fused scaffolds and derivatives was synthesized via the cyclization reaction of 2-indolylmethanols with azonaphthalene. These reactions were realized under mild reaction conditions through catalyst control, providing structurally diverse indole derivatives with moderate to excellent yields. This protocol also shows good substrate adaptability, especially in six-membered ring products.


Asunto(s)
Indoles , Catálisis , Ciclización
7.
Artículo en Inglés | MEDLINE | ID: mdl-33735806

RESUMEN

A rapid pressurized capillary electrochromatography (pCEC) method has been successfully developed for the simultaneous determination of 16 phytohormones in Dendrobium huoshanense. Effects of wavelength, mobile phase, the flow rate, pH value, concentration of buffer and applied voltage were investigated, respectively. The results showed that the 16 phytohormones could be baseline-separated rapidly in less than 21 min on a reversed-phase EP-100-20/45-3-C18 capillary column (total length of 45 cm, effective length of 20 cm, diameter of 100 µm, ODS packing inside for 3 µm) with ACN/5.0 mM ammonium acetate (containing 0.05% formic acid, pH = 3) as the mobile phase using gradient elution mode as follows: 0.1-10.0 min 40%ACN,10-15.0 min 70%ACN, 15.0-20 min 80% ACN, 20-21.0 min 80% ACN at a flow rate of 0.12 mL/min, applied voltage of -5 kV and a UV detection wavelength of 210 nm. The method validation howed that the established method is precise and stability, and the RSDs of intra- and inter-day precision based retention time and peak area were all below 5%. Employed the established method, in our experimental conditions, total 6 endogenous hormones including IAA, IBA, NAA, GA, ABA, t-Z were detected in D. huoshense. However, a relative larger amount of exogenous hormone 2,4-D (25.3 ~ 4.2 µg/kg) and 6-BA (79.5 ~ 35.4 µg/kg) were detected in 1 ~ 4 year old cultivated D. huoshense, suggesting there were still a certain amount of exogenous hormone residue in tissue-cultured D. huoshanese though they had been transplanted to field cultivation from the test-tube plantlets for several years.


Asunto(s)
Electrocromatografía Capilar/métodos , Dendrobium/química , Reguladores del Crecimiento de las Plantas/análisis , Límite de Detección , Modelos Lineales , Extractos Vegetales/química , Tallos de la Planta/química , Reproducibilidad de los Resultados
8.
J Pharm Biomed Anal ; 151: 331-338, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29413982

RESUMEN

A rapid, green, low cost and nondestructive attenuated total reflection near infrared (ATR NIR) method was developed to quantify the total polysaccharide and the main monosaccharides mannose and glucose in Dendrobium huoshanense. Total 100 D. huoshanense samples from different places were analyzed using ATR NIR method. Potential outlying samples were initially removed from the collected NIR data using the PCA-Mahalanobis distance method. Spectral data preprocessing was studied in the construction of a partial least squares (PLS) model and six different signal pretreatment methods, including multiplicative scattering correction (MSC), standard normal transformation (SNV), first and second derivatives, the combination of MSC with the first derivative, and the combination of SNV with the first derivative, were compared. The results showed that the best signal pretreatment method was the spectral data pretreated by SNV combined with the first derivative due to it showed the lowest root-mean-square error of cross-validation (RMSECV), highest R2 for both the polysaccharide and its main monosaccharides. In order to improve the performance of the model, the pretreated full spectrum was calculated by different wavelength selection method. The results showed that the optional wavelength selection model was the one simultaneously selecting the NIR wavelength ranges 7500-5750 cm-1, 5250-4700 cm-1, 4450-4300 cm-1 and 4200-4100 cm-1 because of the lowest RMSECV and the highest R2 among the ten wavelength selection models. The external validation and the complete external validation confirmed the robustness and reliability of the developed NIR model. The contents of the total polysaccharide and the main monosaccharides are the essential quality assessment criterion for plant medicines while their traditional quantification methods involved sample destruction, tedious sample processing and non-environmentally friendly pretreatment, therefore, our study might provide an efficient technique tool for the rapid, green and nondestructive quantification of the total polysaccharide and the main monosaccharides for D. huoshanense and other rich-in-polysaccharide plant medicines.


Asunto(s)
Dendrobium/química , Tecnología Química Verde/métodos , Monosacáridos/análisis , Polisacáridos/análisis , Espectroscopía Infrarroja Corta/métodos , Algoritmos , Tecnología Química Verde/economía , Tecnología Química Verde/instrumentación , Análisis de los Mínimos Cuadrados , Modelos Químicos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta/economía , Espectroscopía Infrarroja Corta/instrumentación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...