Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 39(21): 9250-61, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21859751

RESUMEN

Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Bacillus subtilis/enzimología , Enzimas de Restricción del ADN/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Escherichia coli/enzimología , Manganeso/química , Rec A Recombinasas/metabolismo
2.
J Bacteriol ; 191(6): 1738-48, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19136586

RESUMEN

The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
3.
J Biol Chem ; 283(41): 27355-27359, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18650428

RESUMEN

Polynucleotide phosphorylase (PNPase), an enzyme conserved in bacteria and eukaryotic organelles, processively catalyzes the phosphorolysis of RNA, releasing nucleotide diphosphates, and the reverse polymerization reaction. In Escherichia coli, both reactions are implicated in RNA decay, as addition of either poly(A) or heteropolymeric tails targets RNA to degradation. PNPase may also be associated with the RNA degradosome, a heteromultimeric protein machine that can degrade highly structured RNA. Here, we report that ATP binds to PNPase and allosterically inhibits both its phosphorolytic and polymerization activities. Our data suggest that PNPase-dependent RNA tailing and degradation occur mainly at low ATP concentrations, whereas other enzymes may play a more significant role at high energy charge. These findings connect RNA turnover with the energy charge of the cell and highlight unforeseen metabolic roles of PNPase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli/enzimología , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , Adenosina Trifosfato/genética , Regulación Alostérica/fisiología , Escherichia coli/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Bacteriano/genética
4.
Mol Genet Genomics ; 278(1): 75-84, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17384964

RESUMEN

Adaptation of Escherichia coli at low temperature implicates a drastic reprogramming of gene expression patterns. Mechanisms operating downstream of transcription initiation, such as control of transcription termination, mRNA stability and translatability, play a major role in controlling gene expression in the cold acclimation phase. It was previously shown that Rho-dependent transcription termination within pnp, the gene encoding polynucleotide phosphorylase (PNPase), was suppressed in pnp nonsense mutants, whereas it was restored by complementation with wild type allele. Using a tRNA gene as a reporter and the strong Rho-dependent transcription terminator t ( imm ) of bacteriophage P4 as a tester, here we show that specific sites in the 5'-untranslated region of pnp mRNA are required for PNPase-sensitive cold-induced suppression of Rho-dependent transcription termination. We suggest that suppression of Rho-dependent transcription termination within pnp and its restoration by PNPase is an autogenous regulatory circuit that modulates pnp expression during cold acclimation.


Asunto(s)
Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/biosíntesis , Transcripción Genética , Regiones no Traducidas 5' , Alelos , Secuencia de Bases , Frío , Genes Reporteros , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas de Unión al GTP rho/metabolismo
5.
Biochimie ; 89(1): 145-57, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17084501

RESUMEN

Polynucleotide phosphorylase (PNPase) is a phosphate-dependent 3' to 5' exonuclease widely diffused among bacteria and eukaryotes. The enzyme, a homotrimer, can also be found associated with the endonuclease RNase E and other proteins in a heteromultimeric complex, the RNA degradosome. PNPase negatively controls its own gene (pnp) expression by destabilizing pnp mRNA. A current model of autoregulation maintains that PNPase and a short duplex at the 5'-end of pnp mRNA are the only determinants of mRNA stability. During the cold acclimation phase autoregulation is transiently relieved and cellular pnp mRNA abundance increases significantly. Although PNPase has been extensively studied and widely employed in molecular biology for about 50 years, several aspects of structure-function relationships of such a complex protein are still elusive. In this work, we performed a systematic PCR mutagenesis of discrete pnp regions and screened the mutants for diverse phenotypic traits affected by PNPase. Overall our results support previous proposals that both first and second core domains are involved in the catalysis of the phosphorolytic reaction, and that both phosphorolytic activity and RNA binding are required for autogenous regulation and growth in the cold, and give new insights on PNPase structure-function relationships by implicating the alpha-helical domain in PNPase enzymatic activity.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Northern Blotting , Frío , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Expresión Génica , Regulación de la Expresión Génica , Mutación , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Estabilidad del ARN/genética , ARN Mensajero/análisis , ARN Mensajero/genética
6.
Nucleic Acids Res ; 32(3): 1006-17, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14963263

RESUMEN

Polynucleotide phosphorylase (PNPase), a 3' to 5' exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5'-untranslated leader region of an RNase III-processed form of this transcript. The KH and S1 RNA-binding domains at the C-terminus of the protein (amino acids 552-711) are thought to be involved in pnp mRNA recognition. Here we show that a G454D substitution in E.coli PNPase impairs autogenous regulation whereas it does not affect the catalytic activities of the enzyme. Although the mutation maps outside of the KH and S1 RNA-binding domains, analysis of the mutant protein revealed a defective RNA binding, thus suggesting that other determinants may be involved in PNPase-RNA interactions. The mutation also caused a looser association with the degradosome and an abnormal electrophoretic mobility in native gels. The latter feature suggests an altered structural conformation of PNPase, which may account for the properties of the mutant protein.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , Sustitución de Aminoácidos , Catálisis , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Mensajero/metabolismo
7.
Res Microbiol ; 154(8): 573-80, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14527658

RESUMEN

Upon cold shock Escherichia coli transiently stops growing and adapts to the new temperature (acclimatization phase). The major physiological effects of cold temperature are a decrease in membrane fluidity and the stabilization of secondary structures of RNA and DNA, which may affect the efficiencies of translation, transcription, and replication. Specific proteins are transiently induced in the acclimatization phase. mRNA stabilization and increased translatability play a major role in this phenomenon. Polynucleotide phosphorylase (PNPase) is one of the cold-induced proteins and is essential for E. coli growth at low temperatures. We investigated the global changes in mRNA abundance during cold adaptation both in wild type E. coli MG1655 and in a PNPase-deficient mutant. We observed a twofold or greater variation in the relative mRNA abundance of 20 genes upon cold shock, notably the cold-inducible subset of csp genes and genes not previously associated with cold shock response, among these, the extracytoplasmic stress response regulators rpoE and rseA, and eight genes with unknown function. Interestingly, we found that PNPase both negatively and positively modulated the transcript abundance of some of these genes, thus suggesting a complex role of PNPase in controlling cold adaptation.


Asunto(s)
Frío , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/metabolismo , Adaptación Fisiológica , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Genes Bacterianos , Proteínas de Choque Térmico/genética , Proteínas de la Membrana/genética , Mutación , Hibridación de Ácido Nucleico/métodos , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Factor sigma/genética , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...