Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Radiol Exp ; 8(1): 35, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418763

RESUMEN

OBJECTIVES: Energy consumption and carbon emissions from medical equipment like CT/MRI scanners and workstations contribute to the environmental impact of healthcare facilities. The aim of this systematic review was to identify all strategies to reduce energy use and carbon emissions in radiology. METHODS: In June 2023, a systematic review (Medline/Embase/Web of Science) was performed to search original articles on environmental sustainability in radiology. The extracted data include environmental sustainability topics (e.g., energy consumption, carbon footprint) and radiological devices involved. Sustainable actions and environmental impact in radiology settings were analyzed. Study quality was assessed using the QualSyst tool. RESULTS: From 918 retrieved articles, 16 met the inclusion criteria. Among them, main topics were energy consumption (10/16, 62.5%), life-cycle assessment (4/16, 25.0%), and carbon footprint (2/16, 12.5%). Eleven studies reported that 40-91% of the energy consumed by radiological devices can be defined as "nonproductive" (devices "on" but not working). Turning-off devices during idle periods 9/16 (56.2%) and implementing workflow informatic tools (2/16, 12.5%) were the sustainable actions identified. Energy-saving strategies were reported in 8/16 articles (50%), estimating annual savings of thousand kilowatt-hours (14,180-171,000 kWh). Cost-savings were identified in 7/16 (43.7%) articles, ranging from US $9,225 to 14,328 per device. Study quality was over or equal the 80% of high-quality level in 14/16 (87.5%) articles. CONCLUSION: Energy consumption and environmental sustainability in radiology received attention in literature. Sustainable actions include turning-off radiological devices during idle periods, favoring the most energy-efficient imaging devices, and educating radiological staff on energy-saving practices, without compromising service quality. RELEVANCE STATEMENT: A non-negligible number of articles - mainly coming from North America and Europe - highlighted the need for energy-saving strategies, attention to equipment life-cycle assessment, and carbon footprint reduction in radiology, with a potential for cost-saving outcome. KEY POINTS: • Energy consumption and environmental sustainability in radiology received attention in the literature (16 articles published from 2010 to 2023). • A substantial portion (40-91%) of the energy consumed by radiological devices was classified as "non-productive" (devices "on" but not working). • Sustainable action such as shutting down devices during idle periods was identified, with potential annual energy savings ranging from 14,180 to 171,000 kWh.


Asunto(s)
Huella de Carbono , Radiología , Humanos , Tomógrafos Computarizados por Rayos X , Imagen por Resonancia Magnética , Europa (Continente)
2.
J Comp Neurol ; 530(12): 2188-2214, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35417062

RESUMEN

The diversity of the diprotodontids provides an excellent opportunity to study how a basic marsupial cortical plan has been modified for the needs of the mammals living in different habitats. Very little is known about the connections of the cerebral cortex with the deep brain structures (basal ganglia and thalamus) in this evolutionarily significant group of mammals. In this study, we performed mapping of brain regions and connections in a diprotodontid marsupial from data obtained from an excised brain scanned in high-field (9.4 T) microstructural magnetic resonance imaging (MRI) instrument. The analysis was based on two MRI methodologies. First, high-resolution structural scans were used to map MRI visible brain regions from T1w and T2w images. Second, extensive diffusion tensor imaging (DTI) data were obtained to elucidate connectivity between brain areas using deterministic diffusion tracking of neuronal brain fibers. From the data, we were able to identify corticostriate connections between the frontal association and dorsomedial isocortex and the head of the caudate, and between the lateral somatosensory cortex and the putamen. We were also able to follow the olfactory and limbic connections by tracing fibers in the fornix, cingulum, intrabulbar part of the anterior commissure, and lateral olfactory tract. There was segregation of fibers in the anterior commissure such that olfactory connections passed through the rostroventral part and successively more dorsal cortical areas connected through more dorsal parts of the commissure. Our findings confirm a common pattern of cortical connectivity in therian mammals, even where brain expansion has occurred independently in diverse groups.


Asunto(s)
Conectoma , Neocórtex , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora , Macropodidae , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...