Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 6119, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033186

RESUMEN

Bioelectronic therapies modulating the vagus nerve are promising for cardiovascular, inflammatory, and mental disorders. Clinical applications are however limited by side-effects such as breathing obstruction and headache caused by non-specific stimulation. To design selective and functional stimulation, we engineered VaStim, a realistic and efficient in-silico model. We developed a protocol to personalize VaStim in-vivo using simple muscle responses, successfully reproducing experimental observations, by combining models with trials conducted on five pigs. Through optimized algorithms, VaStim simulated the complete fiber population in minutes, including often omitted unmyelinated fibers which constitute 80% of the nerve. The model suggested that all Aα-fibers across the nerve affect laryngeal muscle, while heart rate changes were caused by B-efferents in specific fascicles. It predicted that tripolar paradigms could reduce laryngeal activity by 70% compared to typically used protocols. VaStim may serve as a model for developing neuromodulation therapies by maximizing efficacy and specificity, reducing animal experimentation.


Asunto(s)
Simulación por Computador , Estimulación del Nervio Vago , Nervio Vago , Animales , Porcinos , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos , Frecuencia Cardíaca/fisiología , Algoritmos
2.
JACC Case Rep ; 29(13): 102373, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38827268

RESUMEN

Cardioneuroablation is a novel approach to treat patients with recurrent vasovagal syncope (VVS), targeting the ganglionated plexi around the atria and thus reducing the vagal input to the heart. This study reports a case of drug-refractory VVS after COVID-19 infection, successfully managed with cardioneuroablation.

3.
Circ Res ; 135(1): 41-56, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712557

RESUMEN

BACKGROUND: Inflammation is pathogenically implicated in pulmonary arterial hypertension; however, it has not been adequately targeted therapeutically. We investigated whether neuromodulation of an anti-inflammatory neuroimmune pathway involving the splenic nerve using noninvasive, focused ultrasound stimulation of the spleen (sFUS) can improve experimental pulmonary hypertension. METHODS: Pulmonary hypertension was induced in rats either by Sugen 5416 (20 mg/kg SQ) injection, followed by 21 (or 35) days of hypoxia (sugen/hypoxia model), or by monocrotaline (60 mg/kg IP) injection (monocrotaline model). Animals were randomized to receive either 12-minute-long sessions of sFUS daily or sham stimulation for 14 days. Catheterizations, echocardiography, indices of autonomic function, lung and heart histology and immunohistochemistry, spleen flow cytometry, and lung single-cell RNA sequencing were performed after treatment to assess the effects of sFUS. RESULTS: Splenic denervation right before induction of pulmonary hypertension results in a more severe disease phenotype. In both sugen/hypoxia and monocrotaline models, sFUS treatment reduces right ventricular systolic pressure by 25% to 30% compared with sham treatment, without affecting systemic pressure, and improves right ventricular function and autonomic indices. sFUS reduces wall thickness, apoptosis, and proliferation in small pulmonary arterioles, suppresses CD3+ and CD68+ cell infiltration in lungs and right ventricular fibrosis and hypertrophy and lowers BNP (brain natriuretic peptide). Beneficial effects persist for weeks after sFUS discontinuation and are more robust with early and longer treatment. Splenic denervation abolishes sFUS therapeutic benefits. sFUS partially normalizes CD68+ and CD8+ T-cell counts in the spleen and downregulates several inflammatory genes and pathways in nonclassical and classical monocytes and macrophages in the lung. Differentially expressed genes in those cell types are significantly enriched for human pulmonary arterial hypertension-associated genes. CONCLUSIONS: sFUS causes dose-dependent, sustained improvement of hemodynamic, autonomic, laboratory, and pathological manifestations in 2 models of experimental pulmonary hypertension. Mechanistically, sFUS normalizes immune cell populations in the spleen and downregulates inflammatory genes and pathways in the lung, many of which are relevant in human disease.


Asunto(s)
Hipertensión Pulmonar , Bazo , Animales , Bazo/metabolismo , Masculino , Ratas , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Ondas Ultrasónicas
4.
Artículo en Inglés | MEDLINE | ID: mdl-38727662

RESUMEN

BACKGROUND: Rhythm control, either with antiarrhythmic drugs or catheter ablation, and rate control strategies are the cornerstones of atrial fibrillation (AF) management. Despite the increasing role of rhythm control over the past few years, it remains inconclusive which strategy is superior in improving clinical outcomes. OBJECTIVES: This study summarizes the total and time-varying evidence regarding the efficacy of rhythm- vs rate-control strategies in the management of AF. METHODS: We systematically perused the MEDLINE, CENTRAL (Cochrane Central Register of Controlled Trials), and Web of Science databases for randomized controlled trials from inception to November 2023. We included studies that compared the efficacy of rhythm control (ie, antiarrhythmic drugs classes Ia, Ic, or III, AF catheter ablation, and electrical cardioversion) and rate control (ie, beta-blocker, digitalis, or calcium antagonist) strategies among patients with nonvalvular AF. The primary outcome was cardiovascular (CV) death, whereas secondary outcomes included all-cause death, stroke, hospitalization for heart failure (HF), sinus rhythm at the end of the follow-up, and rhythm control-related adverse events. A cumulative meta-analysis to assess temporal trends and a meta-regression analysis using the percentage of ablation use was performed. RESULTS: We identified 18 studies with a total of 17,536 patients (mean age: 68.6 ± 9.7 years, 37.9% females) and a mean follow-up of 28.5 months. Of those, 31.9% had paroxysmal AF. A rhythm control strategy reduced CV death (HR: 0.78; 95% CI: 0.62-0.96), stroke (HR: 0.801; 95% CI: 0.643-0.998), and hospitalization for HF (HR: 0.80; 95% CI: 0.69-0.94) but not all-cause death (HR: 0.86; 95% CI: 0.73-1.02) compared with a rate control strategy. This benefit was driven by contemporary studies, whereas more ablation use within the rhythm control arm was associated with improved outcomes, except stroke. CONCLUSIONS: In patients with AF, a contemporary rhythm control strategy leads to reduced CV mortality, HF events, and stroke compared with a rate control strategy.

5.
Sci Adv ; 10(17): eadn3760, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669336

RESUMEN

Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.


Asunto(s)
Linfocitos B , Centro Germinal , Receptores Nicotínicos , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Centro Germinal/metabolismo , Centro Germinal/inmunología , Estimulación del Nervio Vago/métodos , Linfocitos B/metabolismo , Linfocitos B/inmunología , Ratones , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/inmunología , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Inmunoglobulina G/inmunología , Nervio Vago/metabolismo , Nervio Vago/fisiología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología
6.
JACC Heart Fail ; 12(4): 616-627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37656079

RESUMEN

BACKGROUND: Medical treatment for heart failure with preserved ejection (HFpEF) and heart failure with mildly reduced ejection fraction (HFmrEF) has weaker evidence compared with reduced ejection fraction, despite recent trials with an angiotensin receptor neprilysin inhibitor (ARNI) and sodium glucose co-transporter 2 inhibitors (SGLT2is). OBJECTIVES: The authors aimed to estimate the aggregate therapeutic benefit of drugs for HFmrEF and HFpEF. METHODS: The authors performed a systematic review of MEDLINE, CENTRAL, and Web of Science for randomized trials including patients with heart failure (HF) and left ventricular ejection fraction (LVEF) >40%, treated with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (analyzed together as renin-angiotensin system inhibitors [RASi]), beta-blockers (BBs), mineralocorticoid receptor antagonists (MRAs), digoxin, ARNI, and SGLT2i. An additive component network meta-analysis was performed. The primary outcome was a composite of cardiovascular (CV) death and first hospitalization for heart failure (HHF); secondary outcomes were CV death, total HHF, and all-cause mortality. RESULTS: The authors identified 13 studies with a total of 29,875 patients and a mean LVEF of 56.3% ± 8.7%. ARNI, MRA, and SGLT2i separately, but not RASi, BB, or digoxin, reduced the primary composite outcome compared with placebo. The combination of ARNI, BB, MRA, and SGLT2i was the most effective (HR: 0.47 [95% CI: 0.31-0.70]); this was largely explained by the triple combination of ARNI, MRA, and SGLT2i (HR: 0.56 [95% CI 0.43-0.71]). Results were similar for CV death (HR: 0.63 [95% CI 0.43-0.91] for ARNI, MRA, and SGLT2i) or total HHF (HR: 0.49 [95% CI 0.33-0.71] for ARNI, MRA, and SGLT2i) alone. In a subgroup analysis, only SGLT2i had a consistent benefit among all LVEF subgroups, whereas the triple combination had the greatest benefit in HFmrEF, robust benefit in patients with LVEF 50% to 59%, and a statistically marginal benefit in patients with LVEF ≥60%. CONCLUSIONS: In patients with HF and LVEF>40%, the quadruple combination of ARNI, BB, MRA, and SGLT2i provides the largest reduction in the risk of CV death and HHF; driven by the robust effect of the triple combination of ARNI, MRA, and SGLT2i. The benefit was more pronounced in HFmrEF patients.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico , Función Ventricular Izquierda , Metaanálisis en Red , Resultado del Tratamiento , Antagonistas de Receptores de Angiotensina , Digoxina/uso terapéutico
7.
J Neural Eng ; 21(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38131193

RESUMEN

Objective. Neurostimulation is emerging as treatment for several diseases of the brain and peripheral organs. Due to variability arising from placement of stimulation devices, underlying neuroanatomy and physiological responses to stimulation, it is essential that neurostimulation protocols are personalized to maximize efficacy and safety. Building such personalized protocols would benefit from accumulated information in increasingly large datasets of other individuals' responses.Approach. To address that need, we propose a meta-learning family of algorithms to conduct few-shot optimization of key fitting parameters of physiological and neural responses in new individuals. While our method is agnostic to neurostimulation setting, here we demonstrate its effectiveness on the problem of physiological modeling of fiber recruitment during vagus nerve stimulation (VNS). Using data from acute VNS experiments, the mapping between amplitudes of stimulus-evoked compound action potentials (eCAPs) and physiological responses, such as heart rate and breathing interval modulation, is inferred.Main results. Using additional synthetic data sets to complement experimental results, we demonstrate that our meta-learning framework is capable of directly modeling the physiology-eCAP relationship for individual subjects with much fewer individually queried data points than standard methods.Significance. Our meta-learning framework is general and can be adapted to many input-response neurostimulation mapping problems. Moreover, this method leverages information from growing data sets of past patients, as a treatment is deployed. It can also be combined with several model types, including regression, Gaussian processes with Bayesian optimization, and beyond.


Asunto(s)
Estimulación del Nervio Vago , Humanos , Estimulación del Nervio Vago/métodos , Teorema de Bayes , Nervio Vago/fisiología , Potenciales de Acción , Potenciales Evocados
8.
Artículo en Inglés | MEDLINE | ID: mdl-38082599

RESUMEN

Modulation of functionally distinct nerve fibers with bioelectronic devices provides a therapeutic opportunity for various diseases. In this study, we began by developing a computational model including four major subtypes of myelinated fibers and one unmyelinated fiber. Second, we used an intrafascicular electrode to perform kHz-frequency electric stimulation to preferentially modulate a population of fibers. Our model suggests that fiber physical properties and electrode-to-fascicle distance severely impacts stimulus-response relationships. Large diameter fibers (Aα- and Aß-) were only minimally influenced by the fascicle size and electrode location, while smaller diameter fibers (Aδ-, B- and C-) indicated a stronger dependency.Clinical Relevance- Our findings support the possibility of selectively modulating functionally-distinct nerve fibers using electrical stimulation in a small, localized region. Our model provides an effective tool to design next-generation implantable devices and therapeutic stimulation strategies toward minimizing off-target effects.


Asunto(s)
Fibras Nerviosas Mielínicas , Nervio Vago , Fibras Nerviosas Mielínicas/fisiología , Microelectrodos , Nervio Vago/fisiología , Estimulación Eléctrica
9.
Bioelectron Med ; 9(1): 21, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794457

RESUMEN

The emerging field of bioelectronic medicine (BEM) is poised to make a significant impact on the treatment of several neurological and inflammatory disorders. With several BEM therapies being recently approved for clinical use and others in late-phase clinical trials, the 2022 BEM summit was a timely scientific meeting convening a wide range of experts to discuss the latest developments in the field. The BEM Summit was held over two days in New York with more than thirty-five invited speakers and panelists comprised of researchers and experts from both academia and industry. The goal of the meeting was to bring international leaders together to discuss advances and cultivate collaborations in this emerging field that incorporates aspects of neuroscience, physiology, molecular medicine, engineering, and technology. This Meeting Report recaps the latest findings discussed at the Meeting and summarizes the main developments in this rapidly advancing interdisciplinary field. Our hope is that this Meeting Report will encourage researchers from academia and industry to push the field forward and generate new multidisciplinary collaborations that will form the basis of new discoveries that we can discuss at the next BEM Summit.

10.
J Neuroinflammation ; 20(1): 236, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848937

RESUMEN

BACKGROUND: The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits. METHODS: In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves. We defined the stimulus-elicited charge generated at the oxidation potential for NE (~ 0.88 V) as the "NE voltammetry signal" and quantified the dependence of the signal on NE dose and intensity of neurostimulation. We correlated the NE voltammetry signal with the anti-inflammatory effect of splenic nerve stimulation (SpNS) in a model of lipopolysaccharide- (LPS) induced endotoxemia, quantified as suppression of TNF release. RESULTS: The NE voltammetry signal is proportional to the estimated peak NE blood concentration, with 0.1 µg/mL detection threshold. In response to SpNS, the signal increases within seconds, returns to baseline minutes later, and is blocked by interventions that deplete NE or inhibit NE release. The signal is elicited by efferent, but not afferent, electrical or optogenetic vagus nerve stimulation, and by splanchnic nerve stimulation. The magnitude of the signal during SpNS is inversely correlated with subsequent TNF suppression in endotoxemia and explains 40% of the variance in TNF measurements. CONCLUSIONS: FSCV in the spleen provides a marker for real-time monitoring of anti-inflammatory activation of the splenic innervation during autonomic stimulation.


Asunto(s)
Endotoxemia , Norepinefrina , Ratones , Animales , Bazo/fisiología , Nervio Vago/fisiología , Antiinflamatorios , Estimulación Eléctrica
11.
Neuromodulation ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530695

RESUMEN

OBJECTIVES: Low-intensity, focused ultrasound (FUS) is an emerging noninvasive neuromodulation approach, with improved spatial and temporal resolution and penetration depth compared to other noninvasive electrical stimulation strategies. FUS has been used to modulate circuits in the brain and the peripheral nervous system, however, its potential to modulate spinal circuits is unclear. In this study, we assessed the effect of trans-spinal FUS (tsFUS) on spinal reflexes in healthy rats. MATERIALS AND METHODS: tsFUS targeting different spinal segments was delivered for 1 minute, under anesthesia. Monosynaptic H-reflex of the sciatic nerve, polysynaptic flexor reflex of the sural nerve, and withdrawal reflex tested with a hot plate were measured before, during, and after tsFUS. RESULTS: tsFUS reversibly suppresses the H-reflex in a spinal segment-, acoustic pressure- and pulse-repetition frequency (PRF)-dependent manner. tsFUS with high PRF augments the degree of homosynaptic depression of the H-reflex observed with paired stimuli. It suppresses the windup of components of the flexor reflex associated with slower, C-afferent, but not faster, A- afferent fibers. Finally, it increases the latency of the withdrawal reflex. tsFUS does not elicit neuronal loss in the spinal cord. CONCLUSIONS: Our study provides evidence that tsFUS reversibly suppresses spinal reflexes and suggests that tsFUS could be a safe and effective strategy for spinal cord neuromodulation in disorders associated with hyperreflexia, including spasticity after spinal cord injury and painful syndromes.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37506989

RESUMEN

Autonomic dysfunction and chronic inflammation contribute to the pathogenesis and progression of several cardiovascular diseases (CVD), such as heart failure with preserved ejection fraction, atherosclerotic CVD, pulmonary arterial hypertension, and atrial fibrillation. The vagus nerve provides parasympathetic innervation to the heart, vessels, and lungs, and is also implicated in the neural control of inflammation through a neuroimmune pathway involving the spleen. Stimulation of the vagus nerve (VNS) can in principle restore autonomic balance and suppress inflammation, with potential therapeutic benefits in these diseases. Although VNS ameliorated CVD in several animal models, early human studies have demonstrated variable efficacy. The purpose of this review is to discuss the rationale behind the use of VNS in the treatment of CVD, to critically review animal and human studies of VNS in CVD, and to propose possible means to overcome the challenges in the clinical translation of VNS in CVD.

13.
Brain Stimul ; 16(3): 703-711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37055009

RESUMEN

Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.


Asunto(s)
Bazo , Terapia por Ultrasonido , Humanos , Bazo/diagnóstico por imagen , Ultrasonografía , Terapia por Ultrasonido/métodos , Vías Nerviosas , Ondas Ultrasónicas
14.
Brain Stimul ; 16(2): 484-506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773779

RESUMEN

Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.


Asunto(s)
Estimulación del Nervio Vago , Animales , Porcinos , Estimulación del Nervio Vago/métodos , Microtomografía por Rayos X , Nervio Vago/fisiología , Potenciales de Acción , Frecuencia Cardíaca
15.
Nat Commun ; 13(1): 7127, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443291

RESUMEN

Peptides, polymers of amino acids, comprise a vital and expanding therapeutic approach. Their rapid degradation by proteases, however, represents a major limitation to their therapeutic utility and chemical modifications to native peptides have been employed to mitigate this weakness. Herein, we describe functionalized thiocarbazate scaffolds as precursors of aza-amino acids, that, upon activation, can be integrated in a peptide sequence to generate azapeptides using conventional peptide synthetic methods. This methodology facilitates peptide editing-replacing targeted amino acid(s) with aza-amino acid(s) within a peptide-to form azapeptides with preferred therapeutic characteristics (extending half-life/bioavailability, while at the same time typically preserving structural features and biological activities). We demonstrate the convenience of this azapeptide synthesis platform in two well-studied peptides with short half-lives: FSSE/P5779, a tetrapeptide inhibitor of HMGB1/MD-2/TLR4 complex formation, and bradykinin, a nine-residue vasoactive peptide. This bench-stable thiocarbazate platform offers a robust and universal approach to optimize peptide-based therapeutics.


Asunto(s)
Aminoácidos , Bradiquinina , Semivida , Péptido Hidrolasas , Endopeptidasas
16.
Brain Stimul ; 15(6): 1389-1404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36241025

RESUMEN

BACKGROUND: Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved. METHODS: We stimulated the vagus in rats and mice using trains of kHz-frequency stimuli. Stimulation effects were assessed using neuronal c-Fos expression, physiological and nerve fiber responses, optogenetic and computational methods. RESULTS: Intermittent kHz stimulation for 30 min activates specific motor and, preferentially, sensory vagus neurons in the brainstem. At sufficiently high frequencies (>5 kHz) and at intensities within a specific range (7-10 times activation threshold, T, in rats; 15-25 × T in mice), C-afferents are activated, whereas larger, A- and B-fibers, are blocked. This was determined by measuring fiber-specific acute physiological responses to kHz stimulus trains, and by assessing fiber excitability around kHz stimulus trains through compound action potentials evoked by probing pulses. Aspects of selective activation of C-afferents are explained in computational models of nerve fibers by how fiber size and myelin shape the response of sodium channels to kHz-frequency stimuli. CONCLUSION: kHz stimulation is a neuromodulation strategy to robustly and selectively activate vagal C-afferents implicated in physiological homeostasis and disease, over larger vagal fibers.


Asunto(s)
Fibras Nerviosas Mielínicas , Nervio Vago , Ratas , Animales , Ratones , Ratas Sprague-Dawley , Nervio Vago/fisiología , Fibras Nerviosas Mielínicas/fisiología , Células Receptoras Sensoriales , Estimulación Eléctrica/métodos , Neuronas Aferentes/fisiología
17.
ERJ Open Res ; 8(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36299361

RESUMEN

Background: Although the initial use of combination treatment has been proven to be beneficial for patients' clinical outcomes, there are scarce data on its haemodynamic effects. The objective of the present study was to evaluate the effect of an initial combination of pulmonary arterial hypertension (PAH)-targeted therapies on haemodynamic parameters in treatment-naïve PAH patients. Methods: A systematic search of PubMed, Cochrane Central Register of Controlled Trials and Web of Science was performed. We considered eligible studies with an intervention of initial PAH-targeted combination therapy in treatment-naïve PAH patients with or without monotherapy control. A random-effects meta-analysis was performed for the difference between baseline and follow-up in pulmonary vascular resistance (PVR) and other haemodynamic parameters. Results: In 880 patients receiving initial combination therapy PVR was reduced by -6.5 Wood Units (95% CI -7.4--5.7 Wood Units) or by -52% (95% CI -56%--48%, I2=0%) compared to baseline. Initial triple therapy including a parenteral prostanoid resulted in significantly greater PVR reduction (-67% versus -50% with all other combination therapies, p=0.01). The effect was more pronounced in younger patients (p=0.02). Compared to baseline, there was -12.2 mmHg (95% CI -14.0--10.4 mmHg) decrease in mean pulmonary artery pressure, 0.9 L·min-1·m-2 (95% CI 0.8-1.1 L·min-1·m-2) increase in cardiac index, -3.2 mmHg (95% CI -4.1--2.3 mmHg) decrease in right atrial pressure and 8.6% (95% CI 6.9-10.3%) increase in mixed venous oxygen saturation. In the controlled studies, initial combination therapy reduced PVR by -4.2 Wood Units (95% CI -6.1--2.4 Wood Units) compared to monotherapy. Conclusion: Initial combination therapy leads to remarkable haemodynamic amelioration. Parenteral prostanoids should be considered early, especially in more severely affected patients, to enable right ventricular reverse remodelling.

18.
Front Immunol ; 13: 892086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784337

RESUMEN

Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.


Asunto(s)
Neumonía , Bazo , Antiinflamatorios/farmacología , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Neumonía/metabolismo , Nervio Vago/fisiología
19.
Bioelectron Med ; 8(1): 10, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35854394

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) has shown therapeutic potential in a variety of different diseases with many ongoing clinical trials. The role of VNS in reducing ischemic injury in the brain requires further evaluation. Cardiac arrest (CA) causes global ischemia and leads to the injury of vital organs, especially the brain. In this study, we investigated the protective effects of customized threshold-adjusted VNS (tVNS) in a rat model of CA and resuscitation. METHODS: Sprague-Dawley rats underwent 12 min asphyxia-CA followed by resuscitation. Rats were assigned to either post-resuscitation tVNS for 2 h or no-tVNS (control). tVNS was applied by electrode placement in the left cervical vagus nerve. To optimize a threshold, we used animal's heart rate and determined a 15-20% drop from baseline levels as the effective and physiological threshold for each animal. The primary endpoint was 72 h survival; secondary endpoints included neurological functional recovery, reduction in brain cellular injury (histopathology), cardiac and renal injury parameters (troponin I and creatinine levels, respectively). RESULTS: In comparison to the control group, tVNS significantly improved 72 h survival and brain functional recovery after 12 minutes of CA. The tVNS group demonstrated significantly reduced numbers of damaged neurons in the CA1 hippocampal region of the brain as compared to the control group. Similarly, the tVNS group showed decreased trend in plasma troponin I and creatinine levels as compared to the control group. CONCLUSIONS: Our findings suggest that using tVNS for 2 h after 12 minutes of CA attenuates ischemia neuronal cell death, heart and kidney damage, and improves 72 h survival with improved neurological recovery.

20.
Bioelectron Med ; 8(1): 9, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637543

RESUMEN

The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA