Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 18: 1487-1496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637046

RESUMEN

Machine learning (ML) is largely used to develop automatic predictors in migraine classification but automatic predictors for medication overuse (MO) in migraine are still in their infancy. Thus, to understand the benefits of ML in MO prediction, we explored an automated predictor to estimate MO risk in migraine. To achieve this objective, a study was designed to analyze the performance of a customized ML-based decision support system that combines support vector machines and Random Optimization (RO-MO). We used RO-MO to extract prognostic information from demographic, clinical and biochemical data. Using a dataset of 777 consecutive migraine patients we derived a set of predictors with discriminatory power for MO higher than that observed for baseline SVM. The best four were incorporated into the final RO-MO decision support system and risk evaluation on a five-level stratification was performed. ROC analysis resulted in a c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87, respectively, and an accuracy of 0.87 when MO was predicted by at least three RO-MO models. Logistic regression analysis confirmed that the derived RO-MO system could effectively predict MO with ORs of 5.7 and 21.0 for patients classified as probably (3 predictors positive), or definitely at risk of MO (4 predictors positive), respectively. In conclusion, a combination of ML and RO - taking into consideration clinical/biochemical features, drug exposure and lifestyle - might represent a valuable approach to MO prediction in migraine and holds the potential for improving model precision through weighting the relative importance of attributes.

2.
Cancers (Basel) ; 11(3)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866535

RESUMEN

Machine learning (ML) has been recently introduced to develop prognostic classification models that can be used to predict outcomes in individual cancer patients. Here, we report the significance of an ML-based decision support system (DSS), combined with random optimization (RO), to extract prognostic information from routinely collected demographic, clinical and biochemical data of breast cancer (BC) patients. A DSS model was developed in a training set (n = 318), whose performance analysis in the testing set (n = 136) resulted in a C-index for progression-free survival of 0.84, with an accuracy of 86%. Furthermore, the model was capable of stratifying the testing set into two groups of patients with low- or high-risk of progression with a hazard ratio (HR) of 10.9 (p < 0.0001). Validation in multicenter prospective studies and appropriate management of privacy issues in relation to digital electronic health records (EHR) data are presently needed. Nonetheless, we may conclude that the implementation of ML algorithms and RO models into EHR data might help to achieve prognostic information, and has the potential to revolutionize the practice of personalized medicine.

4.
Dis Markers ; 2017: 8781379, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104344

RESUMEN

Using kernel machine learning (ML) and random optimization (RO) techniques, we recently developed a set of venous thromboembolism (VTE) risk predictors, which could be useful to devise a web interface for VTE risk stratification in chemotherapy-treated cancer patients. This study was designed to validate a model incorporating the two best predictors and to compare their combined performance with that of the currently recommended Khorana score (KS). Age, sex, tumor site/stage, hematological attributes, blood lipids, glycemic indexes, liver and kidney function, BMI, performance status, and supportive and anticancer drugs of 608 cancer outpatients were all entered in the model, with numerical attributes analyzed as continuous values. VTE rate was 7.1%. The VTE risk prediction performance of the combined model resulted in 2.30 positive likelihood ratio (+LR), 0.46 negative LR (-LR), and 4.88 HR (95% CI: 2.54-9.37), with a significant improvement over the KS [HR 1.73 (95% CI: 0.47-6.37)]. These results confirm that a ML approach might be of clinical value for VTE risk stratification in chemotherapy-treated cancer outpatients and suggest that the ML-RO model proposed could be useful to design a web service able to provide physicians with a graphical interface helping in the critical phase of decision making.


Asunto(s)
Antineoplásicos/efectos adversos , Aprendizaje Automático , Tromboembolia Venosa/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Sensibilidad y Especificidad , Tromboembolia Venosa/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...