Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37046768

RESUMEN

Neuroblastoma affects mostly young children, bearing a high morbidity and mortality. Liquid biopsies, e.g., molecular analysis of circulating tumor-derived nucleic acids in blood, offer a minimally invasive diagnostic modality. Cell-free RNA (cfRNA) is released by all cells, especially cancer. It circulates in blood packed in extracellular vesicles (EV) or attached to proteins. We studied the feasibility of analyzing cfRNA and EV, isolated by size exclusion chromatography (SEC), from platelet-poor plasma from healthy controls (n = 40) and neuroblastoma patients with localized (n = 10) and metastatic disease (n = 30). The mRNA content was determined using several multiplex droplet digital PCR (ddPCR) assays for a neuroblastoma-specific gene panel (PHOX2B, TH, CHRNA3) and a cell cycle regulation panel (E2F1, CDC6, ATAD2, H2AFZ, MCM2, DHFR). We applied corrections for the presence of platelets. We demonstrated that neuroblastoma-specific markers were present in plasma from 14/30 patients with metastatic disease and not in healthy controls and patients with localized disease. Most cell cycle markers had a higher expression in patients. The mRNA markers were mostly present in the EV-enriched SEC fractions. In conclusion, cfRNA can be isolated from plasma and EV and analyzed using multiplex ddPCR. cfRNA is an interesting novel liquid biopsy-based target to explore further.

2.
JCO Precis Oncol ; 7: e2200113, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652664

RESUMEN

PURPOSE: Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS: At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.


Asunto(s)
Ácidos Nucleicos Libres de Células , Rabdomiosarcoma , Humanos , Niño , Ácidos Nucleicos Libres de Células/genética , Pronóstico , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/genética , ARN , Biomarcadores
3.
Clin Cancer Res ; 27(20): 5576-5585, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34285060

RESUMEN

PURPOSE: Survival of children with rhabdomyosarcoma that suffer from recurrent or progressive disease is poor. Identifying these patients upfront remains challenging, indicating a need for improvement of risk stratification. Detection of tumor-derived mRNA in bone marrow (BM) and peripheral blood (PB) using reverse-transcriptase qPCR (RT-qPCR) is a more sensitive method to detect disseminated disease. We identified a panel of genes to optimize risk stratification by RT-qPCR. EXPERIMENTAL DESIGN: Candidate genes were selected using gene expression data from rhabdomyosarcoma and healthy hematologic tissues, and a multiplexed RT-qPCR was developed. Significance of molecular disease was determined in a cohort of 99 Dutch patients with rhabdomyosarcoma (72 localized and 27 metastasized) treated according to the European pediatric Soft tissue sarcoma Study Group (EpSSG) RMS2005 protocol. RESULTS: We identified the following 11 rhabdomyosarcoma markers: ZIC1, ACTC1, MEGF10, PDLIM3, SNAI2, CDH11, TMEM47, MYOD1, MYOG, and PAX3/7-FOXO1. RT-qPCR was performed for this 11-marker panel on BM and PB samples from the patient cohort. Five-year event-free survival (EFS) was 35.5% [95% confidence interval (CI), 17.5%-53.5%] for the 33/99 RNA-positive patients, versus 88.0% (95% CI, 78.9%-97.2%) for the 66/99 RNA-negative patients (P < 0.0001). Five-year overall survival (OS) was 54.8% (95% CI, 36.2%-73.4%) and 93.7% (95% CI, 86.6%-100.0%), respectively (P < 0.0001). RNA panel positivity was negatively associated with EFS (Hazard Ratio = 9.52; 95% CI, 3.23-28.02), whereas the RMS2005 risk group stratification was not, in the multivariate Cox regression model. CONCLUSIONS: This study shows a strong association between PCR-based detection of disseminated disease at diagnosis with clinical outcome in pediatric patients with rhabdomyosarcoma, also compared with conventional risk stratification. This warrants further validation in prospective trials as additional technique for risk stratification.


Asunto(s)
Rabdomiosarcoma/epidemiología , Rabdomiosarcoma/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/patología , Medición de Riesgo
4.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466359

RESUMEN

mRNA RT-qPCR is shown to be a very sensitive technique to detect minimal residual disease (MRD) in patients with neuroblastoma. Multiple mRNA markers are known to detect heterogeneous neuroblastoma cells in bone marrow (BM) or blood from patients. However, the limited volumes of BM and blood available can hamper the detection of multiple markers. To make optimal use of these samples, we developed a multiplex RT-qPCR for the detection of MRD in neuroblastoma. GUSB and PHOX2B were tested as single markers. The adrenergic markers TH, GAP43, CHRNA3 and DBH and mesenchymal markers POSTN, PRRX1 and FMO3 were tested in multiplex. Using control blood and BM, we established new thresholds for positivity. Comparison of multiplex and singleplex RT-qPCR results from 21 blood and 24 BM samples from neuroblastoma patients demonstrated a comparable sensitivity. With this multiplex RT-qPCR, we are able to test seven different neuroblastoma mRNA markers, which overcomes tumor heterogeneity and improves sensitivity of MRD detection, even in those samples of low RNA quantity. With resources and time being saved, reduction in sample volume and consumables can assist in the introduction of MRD by RT-qPCR into clinical practice.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32923888

RESUMEN

PURPOSE: Circulating tumor DNA (ctDNA) has been used for disease monitoring in several types of cancer. The aim of our study was to investigate whether ctDNA can be used for response monitoring in neuroblastoma. METHODS: One hundred forty-nine plasma samples from 56 patients were analyzed by quantitative polymerase chain reaction (qPCR) for total cell free DNA (cfDNA; albumin and ß-actin) and ctDNA (hypermethylated RASSF1A). ctDNA results were compared with mRNA-based minimal residual disease (qPCR) in bone marrow (BM) and blood and clinical patient characteristics. RESULTS: ctDNA was detected at diagnosis in all patients with high-risk and stage M neuroblastoma and in 3 of 7 patients with localized disease. The levels of ctDNA were highest at diagnosis, decreased during induction therapy, and not detected before or after autologous stem-cell transplantation. At relapse, the amount of ctDNA was comparable to levels at diagnosis. There was an association between ctDNA and blood or BM mRNA, with concordant results when tumor burden was high or no tumor was detected. The discrepancies indicated either low-level BM infiltration (ctDNA negative/mRNA positive) or primary tumor/soft tissue lesions with no BM involvement (ctDNA positive/mRNA negative). CONCLUSION: ctDNA can be used for monitoring disease in patients with neuroblastoma. In high-risk patients and all patients with stage M at diagnosis, ctDNA is present. Our data indicate that at low tumor load, testing of both ctDNA and mRNA increases the sensitivity of molecular disease monitoring. It is likely that ctDNA can originate from both primary tumor and metastases and may be of special interest for disease monitoring in patients who experience relapse in other organs than BM.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34036221

RESUMEN

Patients with neuroblastoma in molecular remission remain at considerable risk for disease recurrence. Studies have found that neuroblastoma tissue contains adrenergic (ADRN) and mesenchymal (MES) cells; the latter express low levels of commonly used markers for minimal residual disease (MRD). We identified MES-specific MRD markers and studied the dynamics of these markers during treatment. PATIENTS AND METHODS: Microarray data were used to identify genes differentially expressed between ADRN and MES cell lines. Candidate genes were then studied using real-time quantitative polymerase chain reaction in cell lines and control bone marrow and peripheral blood samples. After selecting a panel of markers, serial bone marrow, peripheral blood, and peripheral blood stem cell samples were obtained from patients with high-risk neuroblastoma and tested for marker expression; survival analyses were also performed. RESULTS: PRRX1, POSTN, and FMO3 mRNAs were used as a panel for specifically detecting MES mRNA in patient samples. MES mRNA was detected only rarely in peripheral blood; moreover, the presence of MES mRNA in peripheral blood stem cell samples was associated with low event-free survival and overall survival. Of note, during treatment, serial bone marrow samples obtained from 29 patients revealed a difference in dynamics between MES mRNA markers and ADRN mRNA markers. Furthermore, MES mRNA was detected in a higher percentage of patients with recurrent disease than in those who remained disease free (53% v 32%, respectively; P = .03). CONCLUSION: We propose that the markers POSTN and PRRX1, in combination with FMO3, be used for real-time quantitative polymerase chain reaction-based detection of MES neuroblastoma mRNA in patient samples because these markers have a unique pattern during treatment and are more prevalent in patients with poor outcome. Together with existing markers of MRD, these new markers should be investigated further in large prospective studies.

7.
Eur J Cancer ; 54: 149-158, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26796600

RESUMEN

INTRODUCTION: The clinical importance of the detection of neuroblastoma messenger RNA (mRNA) in bone marrow (BM) of localised neuroblastoma patients at diagnosis remains unclear. In this prospective multicentre study, BM samples of a large cohort, were studied using real-time quantitative polymerase chain reaction (qPCR). METHODS: BM samples at diagnosis from 160 patients with localised neuroblastoma were prospectively collected at Dutch and German centres between 2009 and 2013. qPCR was performed using five neuroblastoma specific markers. The association with other biological factors and the prognostic impact of BM positivity and clinical response was assessed. RESULTS: In 58 out of 160 patients neuroblastoma mRNA was detected in BM. In 47 of the 58 positive samples only one marker was found positive. BM positivity was significantly associated with MYCN amplification (p = 0.02) and deletion of chromosome 1p (p = 0.04). In total 31 patients had an event, of which only five patients had progression to stage IV. BM positivity was not associated with an unfavourable outcome. However, the detection of more than one marker was associated with an unfavourable outcome (systemic or local relapse) (event free survival 48% versus 85%; p = 0.03) in the whole cohort and in the observation group. CONCLUSIONS: BM positivity was associated with unfavourable biological factors and might represent more aggressive tumours. Patients with qPCR positive BM should not be upstaged, because of very few systemic events in the cohort. However, for patients with more than one marker positive a more careful follow-up is advisable. These results need to be verified in a very large cohort of localised patients.


Asunto(s)
Biomarcadores de Tumor/genética , Médula Ósea/química , Neuroblastoma/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Adolescente , Examen de la Médula Ósea , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 1 , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Amplificación de Genes , Predisposición Genética a la Enfermedad , Alemania , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Proteína Proto-Oncogénica N-Myc , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Países Bajos , Neuroblastoma/mortalidad , Neuroblastoma/secundario , Neuroblastoma/terapia , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Fenotipo , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
8.
Pediatr Blood Cancer ; 62(8): 1368-73, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939774

RESUMEN

BACKGROUND: The clinical significance of minimal residual disease (MRD) detected by real-time quantitative PCR (qPCR) in autologous stem cell grafts in high risk neuroblastoma is still controversial. In this retrospective multicenter study, autologous stem cell grafts of a large cohort were studied using a panel of RNA markers. PROCEDURE: From 104 patients with high risk neuroblastoma, who received autologous stem cell transplantation as first line treatment, 66 peripheral blood stem cells (PBSC) and 38 CD34+ selected grafts were retrospectively collected at 2 Dutch and 12 German centers between 1997 and 2010. To investigate graft contamination qPCR was performed by using 5 neuroblastoma specific markers (PHOX2B, TH, DDC, CHRNA3, and DBH). RESULTS: In PBSC 6/66 (9%) and in CD34+ selected grafts 3/38 (8%) samples were contaminated. Graft contamination was not associated with an unfavorable outcome (5-years OS, 66% vs. 50.5%; P=0.6 and 5-years EFS, 22% vs. 35%, P=0.7). In multivariate Cox analysis BM MRD at time of harvest was significantly associated with survival (P=0.008 OS and P=0.002 EFS), but graft contamination was still not associated with an unfavorable outcome (P=0.9 OS and P=1 EFS). CONCLUSIONS: Graft contamination is very infrequent in this retrospective cohort of patients with no or minimal BM disease prior to stem cell collection and does not influence outcome in univariate and multivariate analysis. The presence of MRD at time of harvest is a strong outcome predictor. However, these results will have to be verified in a large prospective study.


Asunto(s)
Neoplasia Residual/patología , Células Neoplásicas Circulantes/patología , Neuroblastoma/patología , Trasplante de Células Madre , Adolescente , Descarboxilasas de Aminoácido-L-Aromático/genética , Niño , Preescolar , Proteínas de Homeodominio/genética , Humanos , Lactante , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Nicotínicos/genética , Estudios Retrospectivos , Factores de Transcripción/genética , Trasplante Autólogo
9.
J Mol Diagn ; 17(1): 43-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25445214

RESUMEN

PCR-based detection of minimal residual disease (MRD) in neuroblastoma is currently based on RNA markers; however, expression of these targets can vary, and only paired-like homeobox 2b has no background expression. We investigated whether chromosomal breakpoints, identified by whole-genome sequencing (WGS), can be used as patient-specific DNA MRD markers. WGS data were used to develop large numbers of real-time PCRs specific for tumors of eight patients. These PCRs were used to quantify chromosomal breakpoints in primary tumor and bone marrow samples. Finally, the DNA breakpoints with the highest abundance were compared with a panel of RNA markers. By WGS we identified 42 chromosomal breakpoints in tumor samples from eight patients and developed specific quantitative real-time PCRs for each breakpoint. The tumor-specific breakpoints were all present in bone marrow at diagnosis. For one patient slight clonal selection was observed in response to treatment. Positivity of DNA MRD markers preceded disease progression in four of five patients; in one patient the RNA markers remained negative. For 16 of 22 samples MRD levels determined by RNA and DNA were comparable and in 6 of 22 samples higher MRD levels were detected by DNA markers. DNA breakpoints used as MRD targets in neuroblastoma are reliable and stable markers. In addition, this technique might be applicable for detecting tumor cells in other types of cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Puntos de Rotura del Cromosoma , Neoplasia Residual/genética , Neuroblastoma/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Antineoplásicos/uso terapéutico , Médula Ósea/metabolismo , Médula Ósea/patología , Niño , Preescolar , Femenino , Marcadores Genéticos , Genoma Humano , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Estadificación de Neoplasias , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/mortalidad , Neoplasia Residual/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Neuroblastoma/patología , Análisis de Supervivencia
10.
J Mol Diagn ; 14(2): 168-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22251610

RESUMEN

In neuroblastoma (NB) patients, minimal residual disease (MRD) can be detected by real-time quantitative PCR (qPCR) using NB-specific target genes, such as PHOX2B and TH. However, it is unknown whether the mRNA levels of these targets vary either during treatment or at relapse. If marker genes are not stably expressed, estimation of MRD levels in bone marrow (BM) or peripheral blood will be hampered. We studied the stability of a panel of qPCR markers in primary tumors at diagnosis compared with i) paired metastasis (n = 7), ii) treated (n = 10), and iii) relapse (n = 6) tumors. We also compared relative expression of the targets in iv) primary tumors and BM at diagnosis (n = 17), v) BM and peripheral blood at diagnosis (n = 20), vi) BM at diagnosis and during treatment (n = 26), and vii) BM from different puncture sides (n = 110). Especially at diagnosis, PCR target expression is quite stable. Accurate quantification is possible when expression level can be related to the primary tumor; however, PCR target expression can alter on treatment and at relapse. If the median value of relative expression of a panel of PCR targets is used, most variations due to treatment and outgrowth of subclones level out, allowing for reliable application and quantification of MRD-PCR targets in NB patients.


Asunto(s)
Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Médula Ósea/patología , Neoplasias Hepáticas/secundario , Recurrencia Local de Neoplasia/diagnóstico , Neoplasia Residual/diagnóstico , Neuroblastoma/patología , Médula Ósea/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Metástasis Linfática , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/terapia , Neoplasia Residual/genética , Neoplasia Residual/terapia , Neuroblastoma/genética , Neuroblastoma/terapia , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Inducción de Remisión , Células Tumorales Cultivadas
11.
Clin Chem ; 55(7): 1316-26, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19460840

RESUMEN

BACKGROUND: PCR-based detection of minimal residual disease (MRD) in neuroblastoma (NB) patients can be used for initial staging and monitoring therapy response in bone marrow (BM) and peripheral blood (PB). PHOX2B has been identified as a sensitive and specific MRD marker; however, its expression varies between tumors. Therefore, a panel of markers could increase sensitivity. METHODS: To identify additional MRD markers for NB, we selected genes by comparing SAGE (serial analysis of gene expression) libraries of healthy and NB tissues followed by extensive real-time quantitative PCR (RQ-PCR) testing in samples of tumors (n = 56), control BM (n = 51), PB (n = 37), and cell subsets. The additional value of a panel was determined in 222 NB samples from 82 Dutch stage 4 NB patients (54 diagnosis BM samples, 143 BM samples during/after treatment, and 25 PB samples). RESULTS: We identified 2 panels of specific RQ-PCR markers for MRD detection in NB patients: 1 for analysis of BM samples (PHOX2B, TH, DDC, CHRNA3, and GAP43) and 1 for analysis of PB samples (PHOX2B, TH, DDC, DBH, and CHRNA3). These markers all showed high expression in NB tumors and no or low expression in control BM or PB samples. In patients' samples, the PHOX2B marker detected most positive samples. In PB samples, however, 3 of 7 PHOX2B-negative samples were positive for 1 or more markers, and in BM examinations during treatment, 7% (6 of 86) of the PHOX2B-negative samples were positive for another marker. CONCLUSIONS: Because of differences in the sensitivities of the markers in BM and PB, we advise the use of 2 different panels to detect MRD in these compartments.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasia Residual/diagnóstico , Neuroblastoma/patología , Reacción en Cadena de la Polimerasa/métodos , Humanos , Sensibilidad y Especificidad
12.
J Clin Oncol ; 26(33): 5443-9, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18838715

RESUMEN

PURPOSE: Polymerase chain reaction (PCR)-based detection of minimal residual disease (MRD) in neuroblastoma can be used to monitor therapy response and to evaluate stem cell harvests. Commonly used PCR markers, tyrosine hydroxylase (TH) and GD2 synthase, have expression in normal tissues, thus limiting MRD detection. To identify a more specific MRD marker, we tested PHOX2B. PATIENTS AND METHODS: To determine PHOX2B, TH, and GD2 synthase expression in normal tissues, it was measured by real-time quantitative PCR in samples of normal bone marrow (BM; n = 51), peripheral blood (PB; n = 37), and peripheral-blood stem cells (PBSCs; n = 24). Then, 289 samples of 101 Dutch patients and 47 samples of 43 German patients were tested for PHOX2B and TH; these samples included 52 tumor, 214 BM, 32 BM, and 38 PBSC harvests. Of the 214 BM samples, 167 were compared with cytology, and 47 BM samples were compared with immunocytology (IC). RESULTS: In contrast to TH and GD2 synthase, PHOX2B was not expressed in any of the normal samples. In patient samples, PHOX2B was detected in 32% cytology-negative and in 14% IC-negative samples and in 94% of cytology-positive and in 90% of IC-positive BM samples. Overall, PHOX2B was positive in 43% compared with 31% for TH. In 24% of all samples, TH expression was inconclusive, which is similar to expression found in normal tissues. In 42% of these samples, PHOX2B expression was positive. CONCLUSION: PHOX2B is superior to TH and GD2 synthase in specificity and sensitivity for MRD detection of neuroblastoma by using real-time quantitative PCR. We propose to include PHOX2B in additional prospective MRD studies in neuroblastoma alongside TH and other MRD markers.


Asunto(s)
Biomarcadores de Tumor/análisis , Proteínas de Homeodominio/análisis , Proteínas del Tejido Nervioso/análisis , Neuroblastoma/diagnóstico , Factores de Transcripción/análisis , Adolescente , Médula Ósea/química , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , N-Acetilgalactosaminiltransferasas , Neoplasia Residual , Neuroblastoma/patología , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Tirosina 3-Monooxigenasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...