Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; : 124765, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341384

RESUMEN

The electrospun mats consisting of integrated coelomic fluid (CF) and chitosan (Chs) into polyvinyl alcohol (PVA) nanofibers were produced and evaluated for use as wound dressings. CF was obtained from earthworms (Eisenia andrei (Fetida)) using an electric shock method, while Chs was chemically produced from shrimp chitin and then characterized using titration, Fourier transform infrared (FT-IR) spectroscopy, and viscometry. The wound dressings with different CF contents were evaluated for their antibacterial, antioxidant, and cell viability properties. The dressings infused with CF showed significantly higher antibacterial and antioxidant activity, as well as improved cell viability compared to the control without CF. In vivo studies using adult Wistar albino rats showed that the Chs/PVA/CF wound dressings promoted wound healing and re-epithelialization. Moreover, histological examinations of the injuries coated with Chs/PVA/CF displayed improved re-epithelialization. These results suggest that the Chs/PVA/CF nanofiber has the potential for use as a wound dressing material.

2.
Appl Biochem Biotechnol ; 195(5): 3047-3066, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36508074

RESUMEN

In this study, the chitin of adult Mediterranean flour moth (Ephestia kuheniella) (Cht) was extracted and then converted to chitosan by deacetylation process to achieve the chitosan derived from E. kuheniella (Chsfm). The new chitosan-based scaffold was produced using the polyvinyl alcohol (PVA) co-electrospinning technique. The degree of deacetylation was obtained using the distillation-titration and Fourier transform infrared spectroscopy. The surface morphology and crystallinity index of Chsfm were observed using scanning electron microscopy and X-ray diffraction analysis, respectively, and compared with the commercial chitosan (Chsc). Thermogravimetric analysis was used to estimate two chitosans' water content and thermal stability. The average molecular mass analysis was performed using viscometry. Moreover, the minimum inhibitory concentration and DPPH assay were used to study the antimicrobial activity and antioxidant potential of the Chsfm, respectively. Accordingly, Chsfm was smoother with fewer pores and flakes than Chsc, and its crystallinity index was higher than Chsc. The water content and thermal stability were lower and similar for Chsfm compared to Chsc. The average molecular mass of Chsfm was ~ 5.8 kDa, making it classified as low molecular weight chitosan. The antimicrobial activity of Chsfm against a representative Gram-negative bacteria; E. coli resulted to be the same as Chsc. However, less effective than Chsc against a representative Gram-positive bacteria is S. aureus. The Chsfm/PVA ratio scaffold was optimized at 30:70 to fabricate a uniform nanofiber scaffold.


Asunto(s)
Antiinfecciosos , Quitosano , Mariposas Nocturnas , Animales , Quitosano/farmacología , Quitosano/química , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Agua/química , Alcohol Polivinílico/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA