Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798546

RESUMEN

Mitochondria carry out essential functions in eukaryotic cells. The mitochondrial genome encodes factors critical to support oxidative phosphorylation and mitochondrial protein import necessary for these functions. However, organisms like budding yeast can readily lose their mitochondrial genome, yielding respiration-deficient petite mutants. The fission yeast Schizosaccharomyces pombe is petite-negative, but some nuclear mutations enable the loss of its mitochondrial genome. Here, we characterize the classical petite-positive mutation ptp1-1 as a loss of function allele of the proteasome 19S regulatory subunit component mts4/rpn1, involved in the Ubiquitin-dependent degradation pathway. The mutation results in an altered oxidative stress response, with increased levels of oxidized glutathione, and increased levels of mitochondrial and cytoplasmic chaperones. We propose that Ubiquitin-proteasome regulation of chaperones involved in the Unfolded Protein Response and mitochondrial protein import underlies petite-negativity in fission yeast.

2.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38245838

RESUMEN

Transposable elements are molecular parasites that persist in their host genome by generating new copies to outpace natural selection. Transposable elements exert a large influence on host genome evolution, in some cases providing adaptive changes. Here we measure the fitness effect of the transposable element insertions in the fission yeast Schizosaccharomyces pombe type strain by removing all insertions of its only native transposable element family, the long terminal repeat retrotransposon Tf2. We show that Tf2 elements provide a positive fitness contribution to its host. Tf2 ablation results in changes to the regulation of a mitochondrial gene and, consistently, the fitness effect are sensitive to growth conditions. We propose that Tf2 influences host fitness in a directed manner by dynamically rewiring the transcriptional response to metabolic stress.


Asunto(s)
Elementos Transponibles de ADN , Schizosaccharomyces , Elementos Transponibles de ADN/genética , Schizosaccharomyces/genética , Retroelementos , Secuencias Repetidas Terminales
3.
Sci Adv ; 8(26): eabm9390, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767609

RESUMEN

Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.

4.
Sci Rep ; 8(1): 10930, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026545

RESUMEN

The mechanism by which specific protein-DNA complexes induce programmed replication fork stalling in the eukaryotic genome remains poorly understood. In order to shed light on this process we carried out structural investigations on the essential fission yeast protein Sap1. Sap1 was identified as a protein involved in mating-type switching in Schizosaccharomyces pombe, and has been shown to be involved in programmed replication fork stalling. Interestingly, Sap1 assumes two different DNA binding modes. At the mating-type locus dimers of Sap1 bind the SAS1 sequence in a head-to-head arrangement, while they bind to replication fork blocking sites at rDNA and Tf2 transposons in a head-to-tail mode. In this study, we have solved the crystal structure of the Sap1 DNA binding domain and we observe that Sap1 molecules interact in the crystal using a head-to-tail arrangement that is compatible with DNA binding. We find that Sap1 mutations which alleviate replication-fork blockage at Tf2 transposons in CENP-B mutants map to the head-to-tail interface. Furthermore, several other mutations introduced in this interface are found to be lethal. Our data suggests that essential functions of Sap1 depend on its head-to-tail oligomerization.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Mutación , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Sitios de Unión , Proteína B del Centrómero/genética , Cristalografía por Rayos X , Replicación del ADN , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
5.
Genetics ; 206(4): 1807-1821, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28550017

RESUMEN

Protein modification by the small ubiquitin-like modifier (SUMO) plays important roles in genome maintenance. In Saccharomyces cerevisiae, proper regulation of sumoylation is known to be essential for viability in certain DNA repair mutants. Here, we find the opposite result; proper regulation of sumoylation is lethal in certain DNA repair mutants. Yeast cells lacking the repair factors TDP1 and WSS1 are synthetically lethal due to their redundant roles in removing Top1-DNA covalent complexes (Top1ccs). A screen for suppressors of tdp1∆ wss1∆ synthetic lethality isolated mutations in genes known to control global sumoylation levels including ULP1, ULP2, SIZ2, and SLX5 The results suggest that alternative pathways of repair become available when sumoylation levels are altered. Curiously, both suppressor mutations that were isolated in the Slx5 subunit of the SUMO-targeted Ub ligase created new lysine residues. These "slx5-K" mutations localize to a 398 amino acid domain that is completely free of lysine, and they result in the auto-ubiquitination and partial proteolysis of Slx5. The decrease in Slx5-K protein leads to the accumulation of high molecular weight SUMO conjugates, and the residual Ub ligase activity is needed to suppress inviability presumably by targeting polysumoylated Top1ccs. This "lysine desert" is found in the subset of large fungal Slx5 proteins, but not its smaller orthologs such as RNF4. The lysine desert solves a problem that Ub ligases encounter when evolving novel functional domains.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dominios Proteicos , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
6.
Viruses ; 9(3)2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28335567

RESUMEN

Transposable elements subvert host cellular functions to ensure their survival. Their interaction with the host DNA replication machinery indicates that selective pressures lead them to develop ancestral and convergent evolutionary adaptations aimed at conserved features of this fundamental process. These interactions can shape the co-evolution of the transposons and their hosts.


Asunto(s)
Replicación del ADN , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Evolución Biológica , Humanos
7.
Biochim Biophys Acta ; 1859(10): 1314-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27345571

RESUMEN

It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , ARN Polimerasa II/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transcripción Genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Centrómero/metabolismo , Centrómero/ultraestructura , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/deficiencia , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retroelementos , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Wellcome Open Res ; 1: 19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28612052

RESUMEN

In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic 'scars'. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin) selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.

9.
Science ; 349(6255): 1549-53, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404838

RESUMEN

Long terminal repeat (LTR) retrotransposons are an abundant class of genomic parasites that replicate by insertion of new copies into the host genome. Fungal LTR retrotransposons prevent mutagenic insertions through diverse targeting mechanisms that avoid coding sequences, but conserved principles guiding their target site selection have not been established. Here, we show that insertion of the fission yeast LTR retrotransposon Tf1 is guided by the DNA binding protein Sap1 and that the efficiency and location of the targeting depend on the activity of Sap1 as a replication fork barrier. We propose that Sap1 and the fork arrest it causes guide insertion of Tf1 by tethering the integration complex to target sites.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Mutagénesis Insercional , Retroelementos/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Secuencias Repetidas Terminales/genética , Proteínas de Unión al ADN/genética , Proteínas de Schizosaccharomyces pombe/genética
11.
Nat Commun ; 5: 5344, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25352017

RESUMEN

Application of the CRISPR-Cas9 genome editing system in the model organism Schizosaccharomyces pombe has been hampered by the lack of constructs to express RNA of arbitrary sequence. Here we present expression constructs that use the promoter/leader RNA of K RNA (rrk1) and a ribozyme to produce the targeting guide RNA. Together with constitutive expression of Cas9, this system achieves selection-free specific mutagenesis with efficiencies approaching 100%. The rrk1 CRISPR-Cas9 method enables rapid and efficient genome manipulation and unlocks the CRISPR toolset for use in fission yeast.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Schizosaccharomyces/genética , Mapeo Epitopo , Regulación Fúngica de la Expresión Génica , Vectores Genéticos/metabolismo , Mutagénesis/genética , Mutación/genética , Regiones Promotoras Genéticas , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(5): 1795-800, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449894

RESUMEN

Repressive histone H3 lysine 9 methylation (H3K9me) and its recognition by HP1 proteins are necessary for pericentromeric heterochromatin formation. In Schizosaccharomyces pombe, H3K9me deposition depends on the RNAi pathway. Cryptic loci regulator 4 (Clr4), the only known H3K9 methyltransferase in this organism, is a subunit of the Clr4 methyltransferase complex (CLRC), whose composition is reminiscent of a CRL4 type cullin-RING ubiquitin ligase (CRL) including its cullin Cul4, the RING-box protein Pip1, the DNA damage binding protein 1 homolog Rik1, and the DCAF-like protein delocalization of Swi6 1 (Dos1). Dos2 and Stc1 have been proposed to be part of the complex but do not bear similarity to canonical ubiquitin ligase components. CLRC is an active E3 ligase in vitro, and this activity is necessary for heterochromatin assembly in vivo. The similarity between CLRC and the CRLs suggests that the WD repeat protein Dos1 will act to mediate target recognition and substrate specificity for CLRC. Here, we present a pairwise interaction screen that confirms a CRL4-like subunit arrangement and further identifies Dos2 as a central component of the complex and recruiter of Stc1. We determined the crystal structure of the Dos1 WD repeat domain, revealing an eight-bladed ß-propeller fold. Functional mapping of the putative target-binding surface of Dos1 identifies key residues required for heterochromatic silencing, consistent with Dos1's role as the specificity factor for the E3 ubiquitin ligase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Silenciador del Gen , Heterocromatina/metabolismo , Metiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Centrómero/metabolismo , N-Metiltransferasa de Histona-Lisina , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Coactivadores de Receptor Nuclear/química , Fenotipo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Electricidad Estática , Especificidad por Sustrato
13.
Biochem Soc Trans ; 41(6): 1629-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256266

RESUMEN

LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.


Asunto(s)
Retroelementos/genética , Schizosaccharomyces/genética , Secuencias Repetidas Terminales/genética
14.
Cell Rep ; 2(6): 1513-20, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23260662

RESUMEN

In the fission yeast Schizosaccharomyces pombe, a chromosomal imprinting event controls the asymmetric pattern of mating-type switching. The orientation of DNA replication at the mating-type locus is instrumental in this process. However, the factors leading to imprinting are not fully identified and the mechanism is poorly understood. Here, we show that the replication fork pause at the mat1 locus (MPS1), essential for imprint formation, depends on the lysine-specific demethylase Lsd1. We demonstrate that either Lsd1 or Lsd2 amine oxidase activity is required for these processes, working upstream of the imprinting factors Swi1 and Swi3 (homologs of mammalian Timeless and Tipin, respectively). We also show that the Lsd1/2 complex controls the replication fork terminators, within the rDNA repeats. These findings reveal a role for the Lsd1/2 demethylases in controlling polar replication fork progression, imprint formation, and subsequent asymmetric cell divisions.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Impresión Genómica/fisiología , Complejos Multienzimáticos/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos/fisiología , Complejos Multienzimáticos/genética , Oxidorreductasas N-Desmetilantes/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
16.
Nat Genet ; 44(2): 118-9, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22281766

RESUMEN

One of the most striking properties of RNA interference (RNAi) in Caenorhabditis elegans is its persistence in offspring after the triggering double-stranded RNA (dsRNA) has disappeared. A new study reveals that a heterochromatic silencing mark is deposited around the targets of RNAi and is transmitted through generations. These results show that RNAi can induce stable and heritable chromatin modifications in animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Interferente Pequeño/metabolismo , Animales
17.
Nature ; 479(7371): 135-8, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002604

RESUMEN

Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.


Asunto(s)
Replicación del ADN/fisiología , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Modelos Genéticos , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Origen de Réplica , Fase S , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética
18.
Nature ; 469(7328): 112-5, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21151105

RESUMEN

Centromere-binding protein B (CENP-B) is a widely conserved DNA binding factor associated with heterochromatin and centromeric satellite repeats. In fission yeast, CENP-B homologues have been shown to silence long terminal repeat (LTR) retrotransposons by recruiting histone deacetylases. However, CENP-B factors also have unexplained roles in DNA replication. Here we show that a molecular function of CENP-B is to promote replication-fork progression through the LTR. Mutants have increased genomic instability caused by replication-fork blockage that depends on the DNA binding factor switch-activating protein 1 (Sap1), which is directly recruited by the LTR. The loss of Sap1-dependent barrier activity allows the unhindered progression of the replication fork, but results in rearrangements deleterious to the retrotransposon. We conclude that retrotransposons influence replication polarity through recruitment of Sap1 and transposition near replication-fork blocks, whereas CENP-B counteracts this activity and promotes fork stability. Our results may account for the role of LTR in fragile sites, and for the association of CENP-B with pericentromeric heterochromatin and tandem satellite repeats.


Asunto(s)
Proteína B del Centrómero/metabolismo , Replicación del ADN/genética , Genoma Fúngico/genética , Inestabilidad Genómica/genética , Retroelementos/genética , Schizosaccharomyces/genética , Secuencias Repetidas Terminales/genética , Proteína B del Centrómero/deficiencia , Proteína B del Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada/genética , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Cell ; 135(2): 272-83, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957202

RESUMEN

In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.


Asunto(s)
Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/química , Lisina/metabolismo , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/química , Mutación Puntual , Proteína Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Factores de Transcripción/metabolismo
20.
Curr Biol ; 18(7): 490-5, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18394897

RESUMEN

BACKGROUND: Heterochromatin is chromosomal material that remains condensed throughout the cell division cycle and silences genes nearby. It is found in almost all eukaryotes, and although discovered (in plants) almost 100 years ago, the mechanism by which heterochromatin is inherited has remained obscure. Heterochromatic silencing and histone H3 lysine-9 methylation (H3K9me2) depend, paradoxically, on heterochromatic transcription and RNA interference (RNAi). RESULTS: Here, we show that heterochromatin protein 1 in fission yeast (Swi6) is lost via phosphorylation of H3 serine 10 (H3S10) during mitosis, allowing heterochromatic transcripts to transiently accumulate in S phase. Rapid processing of these transcripts into small interfering RNA (siRNA) promotes restoration of H3K9me2 and Swi6 after replication when cohesin is recruited. We also show that RNAi in fission yeast is inhibited at high temperatures, providing a plausible mechanism for epigenetic phenomena that depend on replication and temperature, such as vernalization in plants and position effect variegation in animals. CONCLUSIONS: These results explain how "silent" heterochromatin can be transcribed and lead to a model for epigenetic inheritance during replication.


Asunto(s)
Replicación del ADN/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Fase S/fisiología , Schizosaccharomyces/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Calor , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...