Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 171(2): 1418-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208271

RESUMEN

The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arsénico/metabolismo , Arsénico/toxicidad , Citocininas/farmacología , Compuestos de Sulfhidrilo/metabolismo , Butionina Sulfoximina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Inactivación Metabólica/efectos de los fármacos , Fenotipo , Fitoquelatinas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
Nat Commun ; 5: 4617, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25099865

RESUMEN

The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arseniato Reductasas/metabolismo , Arsénico/química , Regulación de la Expresión Génica de las Plantas , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arsenitos/química , Mapeo Cromosómico , Escherichia coli/metabolismo , Prueba de Complementación Genética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Oxígeno/química , Fenotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Homología de Secuencia de Aminoácido , Tiosulfato Azufretransferasa/química
3.
PLoS One ; 7(8): e43208, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912829

RESUMEN

Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.


Asunto(s)
Arseniato Reductasas/metabolismo , Arseniatos/toxicidad , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Genotipo , Immunoblotting , Espectrometría de Masas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Schizosaccharomyces/enzimología , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA