Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404275, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973294

RESUMEN

Intervertebral disc degeneration (IVDD) is a chronic degenerative disease involving the aging and loss of proliferative capacity of nucleus pulposus cells (NPCs), processes heavily dependent on mitochondrial dynamics and autophagic flux. This study finds that the absence of BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) is associated with senescence-related NPC degeneration, disrupting mitochondrial quality control. Bone marrow mesenchymal stem cells (BMSCs) have multidirectional differentiation potential and produce extracellular vesicles containing cellular activators. Therefore, in this study, BMSCs are induced under hypoxic stimulation to deliver BNIP3-rich extracellular vesicles to NPCs, thereby alleviating aging-associated mitochondrial autophagic flux, promoting damaged mitochondrial clearance, and restoring mitochondrial quality control. Mechanistically, BNIP3 is shown to interact with the membrane-bound protein annexin A2 (ANXA2), enabling the liberation of the transcription factor EB (TFEB) from the ANXA2-TFEB complex, promoting TFEB nuclear translocation, and regulating autophagy and lysosomal gene activation. Furthermore, a rat model of IVDD is established and verified the in vivo efficacy of the exosomes in repairing disc injuries, delaying NPC aging, and promoting extracellular matrix (ECM) synthesis. In summary, hypoxia-induced BMSC exosomes deliver BNIP3-rich vesicles to alleviate disc degeneration by activating the mitochondrial BNIP3/ANXA2/TFEB axis, providing a new target for IVDD treatment.

2.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978444

RESUMEN

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

3.
Chemosphere ; 361: 142548, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852637

RESUMEN

This study evaluated the effectiveness of using nanocomposite (NCs) of xanthan gum grafted polyacrylamide crosslinked Borax - iron oxide nanoparticle (XG-g-pAAm-CL-Borax-IONP) to remove the amoxicillin antibiotic (AMX) from an aquatic environment. To confirm the structural characteristics of the prepared XG-g-pAAm-CL-Borax-IONP NCs, unique characterization methods (XRD, FT-IR, FE-SEM, EDX, BET, TGA, Zeta, and VSM) were used. Adsorption experimental setups were performed with the influence of solution pH (4-9), the effect of adsorbent dose (0.003-0.02 g), the effect of contact time (5-45 min), and the effect of initial AMX concentration (50-400 mg/L) to achieve the most efficient adsorption conditions. Based on the Freundlich isotherm model, XG-g-pAAm-CL-Borax-IONP NCs provided the maximum AMX adsorption capacity of 1183.639 mg/g. This research on adsorption kinetics also established that the pseudo-second-order model (R2 = 0.991) is outstanding compatibility with the experimental results. AMX adsorption on the NCs may occur through intermolecular hydrogen bonding, diffusion, and trapping into the polymer network. Even after five cycles, these NCs still displayed the best performance. Based on these results, XG-g-pAAm-CL-Borax-IONP NCs may be a viable material for the purification of AMX from contaminated water.


Asunto(s)
Resinas Acrílicas , Amoxicilina , Boratos , Nanocompuestos , Polisacáridos Bacterianos , Contaminantes Químicos del Agua , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Resinas Acrílicas/química , Amoxicilina/química , Polisacáridos Bacterianos/química , Adsorción , Boratos/química , Cinética , Antibacterianos/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
4.
Environ Res ; 258: 119469, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936496

RESUMEN

In recent years, MXene has become one of the most intriguing two-dimensional layered (2Dl) materials extensively explored for various applications. In this study, a Ti3C2 MXene/rGo-Cu2O Nanocomposite (TGCNCs) was developed to eliminate Safranin-O effectively (SO) and Acid Fuchsin (AF) as cationic dyes from the aquatic environment. Multistep was involved in the preparation of the adsorbent system, including the Preparation of Ti3C2, after that, GO synthesis by the Humer method, followed by rGO production, then added CuSO4 to obtain a final Nanocomposite (NCs) called "TGCNCs". The structure of TGCNCs can be varied in several ways, including FTIR, SEM, TGA, Zeta, EDX, XRD, and BET, to affirm the efficacious preparation of TGCNCs. A novel adsorbent system was developed to remove SO and AF, both cationic dyes. Various adsorption conditions have been optimized through batch adsorption tests, including the pH of the solution (4-12), the effect of dosage (0.003-0.03 g), the impact of the contact time (5-30 min), and the effect of beginning dye concentration (25-250 mg/L). Accordingly, the TGCNCs exhibited excellent fitting for Freundlich isotherm mode, resulting in maximum AF and SO adsorption capacities of 909.09 and 769.23 mg g-1. This research on adsorption kinetics suggests that a pseudo-second-order (PSO) model would fit well with the experimental data (RSO2 = 0.998 and RAF2 = 0.990). It is evident from the thermodynamic parameters that adsorption is an endothermic process that is spontaneous and favorable. During the adsorption of SO and AF onto NCs, it is hypothesized that these molecules interact intramolecularly through stacking interactions, H-bond interactions, electrostatic interactions, and entrapment within the polymeric Poros structure nanocomposite. Regeneration studies lasting up to five cycles were the most effective for both organic dyes under study.


Asunto(s)
Cobre , Nanocompuestos , Fenazinas , Termodinámica , Titanio , Contaminantes Químicos del Agua , Nanocompuestos/química , Fenazinas/química , Cinética , Adsorción , Titanio/química , Contaminantes Químicos del Agua/química , Cobre/química , Colorantes/química , Colorantes de Rosanilina/química , Grafito/química , Bencenosulfonatos
5.
J Biochem Mol Toxicol ; 38(7): e23755, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923727

RESUMEN

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder. Oxidative stress and inflammatory responses have a vital role in the pathophysiology of IBD as well as seizure. IBD is associated with extraintestinal manifestations. This study aimed to explore the relationship between colitis and susceptibility to seizures, with a focus on the roles of neuroinflammation and oxidative stress in acetic acid-induced colitis in mice. Forty male Naval Medical Research Institute mice were divided into four groups: control, colitis, pentylenetetrazole (PTZ), and colitis + PTZ. Colitis was induced by intrarectal administration of acetic acid, and seizures were induced by intravenous injection of PTZ 7 days postcolitis induction. Following the measurement of latency to seizure, the mice were killed, and their colons and prefrontal cortex (PFC) were dissected. Gene expression of inflammatory markers including interleukin-1ß, tumor necrosis factor-alpha, NOD-like receptor protein 3, and toll-like receptor 4, as well as total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels were measured in the colon and PFC. Histopathological evaluations were performed on the colon samples. Data were analyzed by t-test or one-way variance analysis. Colitis decreased latency to seizure, increased gene expression of inflammatory markers, and altered levels of MDA, nitrite, and TAC in both the colon and PFC. Simultaneous induction of colitis and seizure exacerbated the neuroimmune response and oxidative stress in the PFC and colon. Results concluded that neuroinflammation and oxidative stress in the PFC at least partially mediate the comorbid decrease in seizure latency in mice with colitis.


Asunto(s)
Colitis , Estrés Oxidativo , Corteza Prefrontal , Convulsiones , Animales , Masculino , Ratones , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Neuroinmunomodulación , Modelos Animales de Enfermedad
6.
Int J Biol Macromol ; 273(Pt 2): 133189, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38885856

RESUMEN

The elimination of pesticides from polluted water is critical due to their harmful environmental and biological impacts. Recently, there has been interest in utilizing natural polymer-based adsorbents as an eco-friendly approach to eliminate or reduce the levels of water pollutants. In this work, we synthesized an antimicrobial and magnetic bionanocomposite consisting of carboxymethyl gond katira-grafted- poly(3-aminobenzoic acid) with iron oxide and zinc oxide NPs (CMT-g-P3ABA/ZnO/Fe3O4) through an in situ polymerization reaction and examined for its ability to adsorb the pesticide acetamiprid (AP). The bionanocomposite was characterized using several analytical techniques, including spectroscopy; XRD presented the crystalline structure of ZnO/Fe3O4 in the CMT-g-P3ABA amorphous matrix. The ZnO/Fe3O4 partially aggregated formation and exhibited polyhedral crystal shapes was depicted by electron microscopy images, vibrating sample magnetometer (45.06 emu/g), porosimetry (5.52 m2/g), and thermal (Chair yield of approximately 43.83 %) and elemental analyses. Under various conditions, including solution pH (4-9), adsorbent dosage (0.005-0.025 g), time of contact (10-30 min), and pesticide preliminary concentration (200-400 mg/L) in 10 mL of the solution. Based on this research, Adsorption data were perfectly fitted by the Freundlich isotherm model with RAP2= 0.99038, while the pseudo-second-order (PSO) model well-explained adsorption kinetics with RAP2= 0.99847. AP adsorption to the CMT-g-P3ABA/ZnO/Fe3O4 bionanocomposite was successful due to hydrophobic interactions, hydrogen bonding, and π-π stacking. Furthermore, adsorption-desorption experiments demonstrated that the bionanocomposite could be regenerated after three reuse cycles without considerable loss of pesticide removal performance. The bionanocomposite also exhibited promising antimicrobial activity in contradiction to test bacteria.


Asunto(s)
Antibacterianos , Neonicotinoides , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Purificación del Agua/métodos , Antibacterianos/química , Antibacterianos/farmacología , Neonicotinoides/química , Cinética , Nanocompuestos/química , Óxido de Zinc/química
7.
Int J Biol Macromol ; 269(Pt 1): 132086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705321

RESUMEN

Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.


Asunto(s)
Oftalmopatías , Hidrogeles , Hidrogeles/química , Humanos , Biopolímeros/química , Oftalmopatías/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Inyecciones , Materiales Biocompatibles/química
8.
Environ Res ; 252(Pt 2): 118893, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604485

RESUMEN

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.


Asunto(s)
Antibacterianos , Neonicotinoides , Contaminantes Químicos del Agua , Óxido de Zinc , Contaminantes Químicos del Agua/química , Óxido de Zinc/química , Adsorción , Antibacterianos/química , Neonicotinoides/química , Tragacanto/química , Nanocompuestos/química , Purificación del Agua/métodos , Plaguicidas/química
9.
ACS Biomater Sci Eng ; 10(4): 1892-1909, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38466909

RESUMEN

MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.


Asunto(s)
Regeneración Ósea , Huesos , Elementos de Transición , Ingeniería , Nitritos
10.
Mol Cell Biochem ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502382

RESUMEN

Thrombosis plays an important role in induction of Coronavirus disease 19 (COVID-19) complications including heart attack and stroke. Reliable biomarkers are needed to predict thrombosis risk for better management and improve patient outcomes. This study aimed to investigate the relationship between homocysteine, a thrombosis-related biomarker, and other thrombosis-related parameters, such as D-dimer and platelet count with disease outcome in COVID-19 patients. This case-control study including 50 intensive care unit hospitalized patients with Covid-19 with a positive RT-PCR test for SARS-CoV-2 infection and 50 healthy individuals as a control group was conducted. Both groups were matched for age and body mass index (BMI) and had no history of underlying diseases such as cardiovascular, liver, kidney or smoking. Blood samples were collected from both groups to measure serum homocysteine, platelet count and D-dimer levels. Data were analyzed using GraphPad Prism version 8.3 software. The study found no statistically significant difference in homocysteine levels between COVID-19 patients and the control group. However, D-dimer levels were significantly higher in the patient group. Platelet count analysis revealed a significant difference between patients who died and those who were discharged from the hospital (P < 0.05). Despite previous studies suggesting a link between homocysteine and thrombosis, this study found no significant difference in homocysteine levels between COVID-19 patients and the control group. The significantly elevated D-dimer levels in the death group patient suggest that D-dimer and thrombocytopenia may be more reliable predictors of thrombosis and worse outcome in COVID-19 patients without underlying diseases.

11.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368115

RESUMEN

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Asunto(s)
Quitosano , Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Quitosano/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
12.
Int J Biol Macromol ; 263(Pt 1): 130296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382792

RESUMEN

Despite the advantages of topical administration in the treatment of skin diseases, current marketed preparations face the challenge of the skin's barrier effect, leading to low therapeutic effectiveness and undesirable side effects. Hence, in recent years the management of skin wounds, the main morbidity-causing complication in hospital environments, and atopic dermatitis, the most common inflammatory skin disease, has become a great concern. Fortunately, new, more effective, and safer treatments are already under development, with chitosan, starch, silk fibroin, agarose, hyaluronic acid, alginate, collagen, and gelatin having been used for the development of nanoparticles, liposomes, niosomes and/or hydrogels to improve the delivery of several molecules for the treatment of these diseases. Biocompatibility, biodegradability, increased viscosity, controlled drug delivery, increased drug retention in the epidermis, and overall mitigation of adverse effects, contribute to an effective treatment, additionally providing intrinsic antimicrobial and wound healing properties. In this review, some of the most recent success cases of biopolymer-based drug delivery systems as part of nanocarriers, semi-solid hydrogel matrices, or both (hybrid systems), for the management of skin wounds and atopic dermatitis, are critically discussed, including composition and in vitro, ex vivo and in vivo characterization, showing the promise of these external drug delivery systems.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/tratamiento farmacológico , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Biopolímeros/farmacología , Colágeno/farmacología , Hidrogeles/farmacología , Liposomas/farmacología
13.
Environ Res ; 239(Pt 2): 117448, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858692

RESUMEN

Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.


Asunto(s)
Quitosano , Nanofibras , Ratas , Animales , Quitosano/farmacología , Óxido de Etileno , Cicatrización de Heridas , Antibacterianos/farmacología
14.
BMC Biotechnol ; 23(1): 39, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723466

RESUMEN

Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.


Asunto(s)
Infecciones Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacología , Glicoles , Staphylococcus aureus , Agar , Lisostafina , Polímeros , Biopelículas
15.
Environ Res ; 236(Pt 1): 116708, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482130

RESUMEN

Metal-organic frameworks (MOFs) offered excellent catalytic activity due to their superior porosity, and high densities of catalytic sites in remarkable specific surfaces. In this research, we prepared a magnetic nanocomposite based on MOF-5 which is one of the prominent and practical structures that have been reported in many applications, and investigated the advantages of it as a catalyst. The multi-functional catalyst was prepared in five steps including (1) preparation of cobalt ferrite nanoparticles (CoFe2O4), (2) surface modification of cobalt ferrite using tetraethyl orthosilicate, (3) surface functionalization using 3-aminopropyl triethoxysilane, (4) preparation of MOF-5, (5) preparation of CoFe2O4@SiO2-NH2@MOF-5 nanocomposite. The resulting catalyst was evaluated by FTIR, FESEM, EDX, XRD, and VSM analyses. The CoFe2O4@SiO2-NH2@MOF-5 nanocomposite was applied as a catalyst for the quinazoline derivatives' synthesis. Various products were prepared with significant yields (90-98%) in short reaction times (20-60 min) without difficult work-up. In addition, the magnetic behavior of the catalyst allows it to be collected and recycled by a magnet and applied for six consecutive cycles without significantly reducing its efficiency. Quinazoline derivatives showed significant biological activities so their antioxidant activity was between 23.7% and 88.9% and their antimicrobial activity was in contradiction of E. coli, S. enterica, L. monocytogenes, S. aureus, and E. faecalis.


Asunto(s)
Escherichia coli , Dióxido de Silicio , Staphylococcus aureus , Fenómenos Magnéticos
17.
Environ Res ; 233: 116466, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348634

RESUMEN

In this research study, a novel method, an in-situ growth approach, to incorporate metal-organic framework (MOF) into carrageenan-grafted- polyacrylamide-Fe3O4 substrate was introduced. Carrageenan-grafted-polyacrylamide-Fe3O4/MOF nanocomposite (kC-g-PAAm@Fe3O4-MOF-199) was fabricated utilizing three stages. In this way, the polyacrylamide (PAAm) was grafted onto the carrageenan (kC) backbone via free radical polymerization in the presence of methylene bisacrylamide (MBA) as cross-linker and Fe3O4 magnetic nanoparticles. Next, the kC-g-PAAm@Fe3O4 was modified by MOF-199 via an in-situ solvothermal approach. Several analyses such as Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-Dispersive X-ray Spectroscopy (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) demonstrated the successful synthesis of kC-g-PAAm@Fe3O4-MOF-199 magnetic hydrogel nanocomposite. The XRD pattern of magnetic hydrogel nanocomposite illustrated characteristic peaks of Fe3O4, neat kC, and MOF-199 with enhanced crystallinity in comparison with kC-g-PAAm@Fe3O4. TGA showed it has a char yield of 24 wt% at 800 °C. VSM confirmed its superparamagnetic behavior (with Ms of 8.04 emu g-1), and the BET surface area of kC-g-PAAm@Fe3O4-MOF-199 was measured at 64.864 m2 g-1, which was higher than that of kC-g-PAAm@Fe3O4 due to the highly porous MOF-199 incorporation with a BET surface area of 905.12 m2 g-1). The adsorption effectiveness of kC-g-PAAm@Fe3O4-MOF-199 for eliminating cephalosporin and quinolones antibiotics, i.e., Cefixime (CFX) and Levofloxacin (LEV) from the aquatic area was considered. Several experimental setups were used to evaluate the efficacy of adsorption, such as solution pH, amount of adsorbent, contact duration, and initial concentration. The maximum adsorption capacity (Qmax) of the prepared magnetic hydrogel nanocomposite was found to be 2000 and 1666.667 mg-1 for LEV and CFX using employing 0.0025 g of adsorbent. The Freundlich isotherm model well described the experimental adsorption data with R2CFX = 0.9986, and R2LEV = 0.9939. And the adsorption kinetic data were successfully represented by the pseudo-second-order model with R2LEV = 0.9949 and R2CFX = 0.9906. Hydrogen bonding, π-π interaction, diffusion, and entrapment in the hydrogel network all contributed to the successful adsorption of both antibiotics onto the kC-g-PAAm@Fe3O4-MOF-199 adsorbent. Other notable physicochemical properties include the three-dimensional structure and availability of the reactive adsorption sites. Moreover, the adsorption/desorption efficacy of magnetic hydrogel nanocomposites was not significantly diminished after four cycles of recovery.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Antibacterianos , Cefixima , Levofloxacino , Adsorción , Carragenina , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Hidrogeles , Contaminantes Químicos del Agua/química , Cinética
18.
J Nanobiotechnology ; 21(1): 199, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344894

RESUMEN

Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Nanoestructuras , Neumonía , Virosis , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevención & control , Nanoestructuras/uso terapéutico , Prueba de COVID-19
19.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
20.
Heliyon ; 9(5): e15886, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206030

RESUMEN

A magnetic poly (1,8-diaminonaphthalene)-nickel (PDAN-Ni@Fe3O4) composite as a multifunctional nanocatalyst was prepared in several steps including (I) synthesis of poly (1,8-diaminonaphthalene) (PDAN), (II) modification of PDAN with NiSO4 (PDAN-Ni) and (III) preparation of magnetic nanocatalyst by iron (I and II) salts in the existence of PDAN-Ni complex (PDAN-Ni@Fe3O4). Fourier-transform infrared spectroscopy (FTIR), elemental analysis (CHNSO), vibrating-sample magnetometer (VSM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), field emission scanning electron microscope (FESEM), ultraviolet-visible (UV-vis), and thermogravimetric analysis (TGA) were applied to characterize the prepared nanocatalyst. The PDAN-Ni@Fe3O4 was applied as an environmentally friendly nanocatalyst for the isoxazole-5(4H)-ones synthesis via a one-pot reaction between aryl/heteroaryl aldehyde, hydroxylamine hydrochloride, and ß-ketoester. The nanocomposite was also used for the synthesis of some new alkylene bridging bis 4-benzylidene-3-methyl isoxazole-5(4H)-ones. The catalyst's reusability, and the antioxidant and antibacterial activities of both catalyst and products, were studied. Results showed that the nanocatalyst and isoxazole-5(4H)-ones have antioxidant activity of 75% and 92%, respectively. In addition, the antibacterial test showed that the nanocatalyst and isoxazole-5(4H)-ones have highly active versus Staphylococcus aureus and Escherichia coli bacteria. The reusability and stability of the nanocatalyst, a medium to higher product yield and conversion, a faster reaction time, and the use of green solvents were a few benefits of this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA