Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 4942637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898782

RESUMEN

The main purpose of this study is to observe the importance of machine vision (MV) approach for the identification of five types of skin cancers, namely, actinic-keratosis, benign, solar-lentigo, malignant, and nevus. The 1000 (200 × 5) benchmark image datasets of skin cancers are collected from the International Skin Imaging Collaboration (ISIC). The acquired ISIC image datasets were transformed into texture feature dataset that was a combination of first-order histogram and gray level co-occurrence matrix (GLCM) features. For the skin cancer image, a total of 137,400 (229 × 3 x 200) texture features were acquired on three nonover-lapping regions of interest (ROIs). Principal component analysis (PCA) clustering approach was employed for reducing the dimension of feature dataset. Each image acquired twenty most discriminate features based on two different approaches of statistical features such as average correlation coefficient plus probability of error (ACC + POE) and Fisher (Fis). Furthermore, a correlation-based feature selection (CFS) approach was employed for feature reduction, and optimized 12 features were acquired. Furthermore, a classification algorithm naive bayes (NB), Bayes Net (BN), LMT Tree, and multilayer perception (MLP) using 10 K-fold cross-validation approach were employed on optimized feature datasets and the overall accuracy achieved by MLP is 97.1333%.


Asunto(s)
Nevo , Neoplasias Cutáneas , Algoritmos , Teorema de Bayes , Humanos , Neoplasias Cutáneas/diagnóstico por imagen
2.
Comput Intell Neurosci ; 2022: 7954333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755754

RESUMEN

Liver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very lightweight convolutional neural network (CNN) to extract the liver region from CT scan images. The suggested CNN algorithm consists of 3 convolutional and 2 fully connected layers, where softmax is used to discriminate the liver from background. Random Gaussian distribution is used for weight initialization which achieved a distance-preserving-embedding of the information. The proposed network is known as Ga-CNN (Gaussian-weight initialization of CNN). General experiments are performed on three benchmark datasets including MICCAI SLiver'07, 3Dircadb01, and LiTS17. Experimental results show that the proposed method performed well on each benchmark dataset.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
3.
Comput Intell Neurosci ; 2022: 2665283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634046

RESUMEN

Segmentation of a liver in computed tomography (CT) images is an important step toward quantitative biomarkers for a computer-aided decision support system and precise medical diagnosis. To overcome the difficulties that come across the liver segmentation that are affected by fuzzy boundaries, stacked autoencoder (SAE) is applied to learn the most discriminative features of the liver among other tissues in abdominal images. In this paper, we propose a patch-based deep learning method for the segmentation of a liver from CT images using SAE. Unlike the traditional machine learning methods, instead of anticipating pixel by pixel learning, our algorithm utilizes the patches to learn the representations and identify the liver area. We preprocessed the whole dataset to get the enhanced images and converted each image into many overlapping patches. These patches are given as input to SAE for unsupervised feature learning. Finally, the learned features with labels of the images are fine tuned, and the classification is performed to develop the probability map in a supervised way. Experimental results demonstrate that our proposed algorithm shows satisfactory results on test images. Our method achieved a 96.47% dice similarity coefficient (DSC), which is better than other methods in the same domain.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Hígado/diagnóstico por imagen , Aprendizaje Automático , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...