Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 52(4): 837-846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37254884

RESUMEN

Denitrification, the anaerobic microbial conversion of nitrate (NO3 - ), a common water pollutant, to nitrogen (N) gases, is often high in the soil of natural wetlands. In areas where natural wetlands have been degraded or destroyed, constructed and restored wetlands have been used to restore ecosystem services like denitrification. Thus, denitrification in restored and constructed wetlands could play an important role in treating anthropogenic N sources such as combined sewer overflow discharges which can be high in NO3 - . In this study, we measured denitrification potential using an anaerobic slurry assay and made a suite of ancillary measurements (soil moisture content, microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools, and soil respiration) in four constructed salt marsh wetlands, and a series of wetland habitat basins in Newtown Creek, NY, an urban superfund site. Samples were also taken from natural salt marshes located at Paerdegat Basin, Jamaica Bay, NY. Our results show that constructed Spartina alterniflora marshes in ultra-urban Newtown Creek support denitrification potential equivalent to rates of natural marshes in Jamaica Bay and reference marshes in other urban estuaries. There were significant positive correlations between microbial biomass C and N content and organic matter content and denitrification potential. Results suggest that constructed wetlands can support wetland vegetation, soils, and microbial life and contribute to N removal under ultra-urban conditions.


Asunto(s)
Desnitrificación , Restauración y Remediación Ambiental , Suelo , Humedales , Ecosistema , Nitrógeno/análisis , Suelo/química
2.
Microb Ecol ; 85(3): 916-930, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36826588

RESUMEN

Salt marshes play an important role in the global nutrient cycle. The sediments in these systems harbor diverse and complex bacterial communities possessing metabolic capacities that provide ecosystem services such as nutrient cycling and removal. On the East Coast of the USA, salt marshes have been experiencing degradation due to anthropogenic stressors. Salt marsh islands within Jamaica Bay, New York City (USA), are surrounded by a large highly urbanized watershed and have declined in area. Restoration efforts have been enacted to reduce further loss, but little is known about how microbial communities develop following restoration activities, or how processes such as nitrogen cycling are impacted. Sediment samples were collected at two sampling depths from five salt marsh islands to characterize the bacterial communities found in marsh sediment including a post-restoration chronosequence of 3-12 years. We used 16s rRNA amplicon sequencing to define alpha and beta diversity, taxonomic composition, and predicted metabolic profile of each sediment sample. We found significant differences in alpha diversity between sampling depths, and significant differences in beta diversity, taxonomic composition, and predicted metabolic capacity among the five sampling locations. The youngest restored site and the degraded natural sampling site exhibited the most distinct communities among the five sites. Our findings suggest that while the salt marsh islands are located in close proximity to each other, they harbor distinct bacterial communities that can be correlated with post-restoration age, marsh health, and other environmental factors such as availability of organic carbon. IMPORTANCE: Salt marshes play a critical role in the global nutrient cycle due to sediment bacteria and their metabolic capacities. Many East Coast salt marshes have experienced significant degradation over recent decades, thought largely to be due to anthropogenic stressors such as nitrogen loading, urban development, and sea-level rise. Salt marsh islands in Jamaica Bay (Queens/Brooklyn NY) are exposed to high water column nitrogen due to wastewater effluent. Several receding marsh islands have been subjected to restoration efforts to mitigate this loss. Little is known about the effect marsh restoration has on bacterial communities, their metabolic capacity, or how they develop post-restoration. Here, we describe the bacterial communities found in marsh islands including a post-restoration chronosequence of 3-12 years and one degraded marsh island that remains unrestored. We found distinct communities at marsh sites, despite their geographic proximity. Differences in diversity and community composition were consistent with changes in organic carbon availability that occur during marsh development, and may result in differences in ecosystem function among sites.


Asunto(s)
Microbiota , Humedales , Ecosistema , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sedimentos Geológicos/microbiología , Bacterias , Nitrógeno/metabolismo , Carbono/metabolismo
3.
Environ Sci Technol ; 55(21): 14457-14465, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672569

RESUMEN

Recently, interest has grown in using oyster-mediated denitrification resulting from aquaculture and restoration as mechanisms for reactive nitrogen (N) removal. To date, short-term N removal through bioextraction has received the most management interest, but there is a growing body of research that has shown oysters can also mediate the long-term removal of N through denitrification (the microbial conversion of reactive N to relatively inert dinitrogen (N2) gas). Oyster suspension feeding and ammonium release via waste and deposition of organic matter to the sediments can stimulate nitrification-denitrification near oyster reefs and aquaculture sites. Oysters also harbor a diverse microbial community in their tissue and shell promoting denitrification and thus enhanced N removal. Additionally, surface areas on oyster reefs provide a habitat for other filter-feeding macrofaunal communities that can further enhance denitrification. Denitrification is a complex biogeochemical process that can be difficult to convey to stakeholders. These complexities have limited consideration and inclusion of oyster-mediated denitrification within nutrient management. Although oyster-mediated denitrification will not be a standalone solution to excess N loading, it may provide an additional management tool that can leverage oyster aquaculture and habitat restoration as a N mitigation strategy. Here, we provide an overview of the biogeochemical processes involved in oyster-mediated denitrification and summarize how it could be incorporated into nutrient management efforts by various stakeholders.


Asunto(s)
Desnitrificación , Ostreidae , Animales , Ecosistema , Nitrificación , Nitrógeno , Nutrientes
4.
Mar Environ Res ; 161: 105122, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32846315

RESUMEN

Heavy metal contamination and water quality may alter reproductive capacity of oysters in highly urbanized, eutrophic ecosystems. This study assessed physiological biomarkers and heavy metal body burdens in adult oysters, Crassostrea virginica, placed at a highly urban and reference site. Condition index and Vitellogenin-like proteins were significantly different between sites, but protein concentration and activity of the electron transport system were not. Accumulation of Cd and Hg occurred at both sites, and Cd body burden was greater at the urban site. There was a negative relationship between condition index and Cd body burden at the urban site, while no relationship was found between physiological biomarkers and metal burden at the reference site. The results suggest that oyster condition and reproductive potential may be negatively influenced by the biotic and abiotic factors typically found within urban, eutrophic ecosystems.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Biomarcadores , Ecosistema , Estuarios , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Mar Environ Res ; 154: 104845, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056699

RESUMEN

Anthropogenic disturbances may be increasing jellyfish populations globally. Epibenthic jellyfish are ideal organisms for studying this phenomenon due to their sessile lifestyle, broad geographic distribution, and prevalence in near-shore coastal environments. There are few studies, however, that have documented epibenthic jellyfish abundance and measured their impact on ecological processes in tropical ecosystems. In this study, the density and size of the upside-down jellyfish (Cassiopea spp.) were measured in Codrington Lagoon, Barbuda. A sediment core incubation study, with and without Cassiopea, also was performed to determine their impact on benthic oxygen and nutrient fluxes. Densities of Cassiopea were 24-168 m-2, among the highest reported values in the literature. Under illuminated conditions, Cassiopea increased oxygen production >300% compared to sediment alone, and they changed sediments from net heterotrophy to net autotrophy. Cassiopea increased benthic ammonium uptake, but reduced nitrate uptake, suggesting they can significantly alter nitrogen cycling. Future studies should quantify the abundance of Cassiopea and measure their impacts on ecosystem processes, in order to further determine how anthropogenic-related changes may be altering the function of tropical coastal ecosystems.


Asunto(s)
Tamaño Corporal , Cnidarios , Ecosistema , Sedimentos Geológicos , Oxígeno , Animales , Bahías , Región del Caribe , Cnidarios/anatomía & histología , Cnidarios/metabolismo , Sedimentos Geológicos/química , Oxígeno/metabolismo , Densidad de Población
6.
Environ Sci Pollut Res Int ; 26(25): 25958-25968, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31273655

RESUMEN

To assess the toxicity and accumulation (total and subcellular partitioning) of cadmium (Cd) and mercury (Hg), juvenile eastern oysters, Crassostrea virginica, were exposed for 4 weeks to a range of concentrations (Control, Low (1×), and High (4×)). Despite the 4-fold increase in metal concentrations, oysters from the High-Cd treatment (2.4 µM Cd) attained a body burden that was only 2.4-fold greater than that of the Low-Cd treatment (0.6 µM Cd), while oysters from the High-Hg treatment (0.056 µM Hg) accumulated 8.9-fold more Hg than those from the Low-Hg treatment (0.014 µM Hg). This fold difference in total Cd burdens was, in general, mirrored at the subcellular level, though binding to heat-denatured proteins in the High-Cd treatment was depressed (only 1.6-fold higher than the Low-Cd treatment). Mercury did not appear to appreciably partition to the subcellular fractions examined in this study, with the fold difference in accumulation between the Low- and High-Hg treatments ranging from 1.5-fold (heat-stable proteins) to 4.6-fold (organelles). Differences in toxicological impairments (reductions in condition index, protein content, and ETS activity) exhibited by oysters from the High-Cd treatment may be partially due to the nature of how different metals partition to subcellular components in the oysters, though exact mechanisms will require further examination.


Asunto(s)
Crassostrea/metabolismo , Mercurio/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Cadmio/metabolismo , Crassostrea/química , Calor , Mercurio/química , Contaminantes Químicos del Agua/química
7.
Mar Pollut Bull ; 124(1): 376-387, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28778382

RESUMEN

Seagrass meadows are important sites of nitrogen (N) transformations in estuaries, however, the role of N loading in driving relative rates of N fixation and denitrification in seagrass habitats is unclear. The current study quantified N fluxes in eelgrass meadows (Zostera marina (L.)) and nearby unvegetated sand in trials representing in situ and N enriched conditions. Net N2 fluxes were low or negative under in situ conditions in both eelgrass and sand. Under N enriched conditions, denitrification was higher than N-fixation, and denitrification in eelgrass was significantly higher than sand. Denitrification of water column NO3- was more significant than coupled nitrification-denitrification in the eelgrass. Denitrification was likely supported by greater organic carbon and N within the eelgrass sediment compared to sand. Eelgrass meadows in Shinnecock Bay may facilitate the ecosystem service of N removal and retention during short-term nutrient pulses that can originate from groundwater discharge and stormwater runoff.


Asunto(s)
Pradera , Nitrógeno/metabolismo , Zosteraceae , Bahías , Desnitrificación , Monitoreo del Ambiente , New York , Nitrificación
8.
Ecol Appl ; 24(2): 271-86, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689140

RESUMEN

Oyster reefs have declined globally. Interest in their restoration has motivated research into oyster-mediated ecosystem services including effects on biodiversity, filtration, and nitrogen (N) cycling. Recent evidence suggests oysters may promote denitrification, or anaerobic respiration of nitrate (NO3-) into di-nitrogen gas, via benthic deposition of carbon (C) and N-rich biodeposits. However, the mechanisms whereby biodeposits promote N transformations prerequisite to denitrification (e.g., mineralization and nitrification) are unclear. Previous research has also not measured oysters' influence on N cycling in urbanized areas. In May 2010 we deployed eastern oysters (Crassostrea virginica) in mesh cages above sand-filled boxes at four sites across a nutrient gradient in Jamaica Bay, New York City (New York, USA). Oysters were arranged at four densities: 0, 40, 85, and 150 oysters/m2. For 17 months we measured water-column nutrients and chlorophyll a, every two weeks to monthly. Every two months we measured sediment ash-free dry mass (AFDM), exchangeable ammonium (NH4+), ammonification, nitrification, denitrification potential (DNP), and NO3- and C limitation of DNP. Oysters increased sediment AFDM at three of four sites, with the greatest increase at high density. Oysters did not affect any N pools or transformations. However, variation among sites and dates illustrated environmental drivers of C and N biogeochemistry in this urban estuary. Overall, nitrification was positively related to net ammonification, water column NH4+, and sediment NH4+, but was not correlated with DNP. Denitrification was consistently and strongly NO3- limited, while C was not limiting or secondarily limiting. Therefore, the oyster-mediated increase in AFDM did not affect DNP because C was not its primary driver. Also, because DNP was unrelated to nitrification, it is unlikely that biodeposit N was converted to NO3- for use as a denitrification substrate. Predicting times or sites where denitrification is driven by the C and N species originating from oyster biodeposits remains a challenge under eutrophic conditions. Towards this goal, we synthesized our conclusions with literature predictions in a conceptual model for pathways whereby oysters might influence C and N dynamics differently in oligotrophic relative to eutrophic ecosystems.


Asunto(s)
Carbono/metabolismo , Crassostrea/metabolismo , Ecosistema , Estuarios , Sedimentos Geológicos/química , Nitrógeno/metabolismo , Animales , Carbono/química , Monitoreo del Ambiente , Ciudad de Nueva York , Nitrificación , Nitrógeno/química , Estaciones del Año , Agua de Mar/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA