Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(6): e0198702, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29883493

RESUMEN

Unsignaled stress can have profound effects on animal behavior. While most investigation of stress-effects on behavior follows chronic exposures, less is understood about acute exposures and potential after-effects. We examined walking activity in Drosophila following acute exposure to high temperature or electric shock. Compared to initial walking activity, flies first increase walking with exposure to high temperatures then have a strong reduction in activity. These effects are related to the intensity of the high temperature and number of exposures. The reduction in walking activity following high temperature and electric shock exposures survives context changes and lasts at least five hours. Reduction in the function of the biogenic amines octopamine / tyramine and serotonin both strongly blunt the increase in locomotor activity with high temperature exposure. However, neither set of biogenic amines alter the long lasting depression in walking activity after exposure.


Asunto(s)
Drosophila melanogaster/fisiología , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Locomoción/fisiología , Animales , Femenino , Masculino , Octopamina/metabolismo , Serotonina/metabolismo , Tiramina/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-20228998

RESUMEN

The biogenic amines play a critical role in establishing memories. In the insects, octopamine, dopamine, and serotonin have key functions in memory formation. For Drosophila, octopamine is necessary and sufficient for appetitive olfactory memory formation. Whether octopamine plays a general role in reinforcing memories in the fly is not known. Place learning in the heat-box associates high temperatures with one part of a narrow chamber, and a cool, strongly preferred temperature with the other half of the chamber. The cool-temperature-associated chamber half could provide a rewarding stimulus to a fly, and thus a place memory is composed of an aversive and rewarded memory component. The role of octopamine in place memory was thus tested. Using a mutation in the tyramine beta hydroxylase (TbetaH[M18]) and blocking of evoked synaptic transmission in the octopamine (and tyramine) neurons labeled with a tyramine decarboxylase-2 (TDC2) gene regulatory elements we found that reinforcement of place memories is independent of normal octopamine signaling. Thus, reinforcing mechanisms in Drosophila have specialized systems in the formation of specific memory types.


Asunto(s)
Conducta Animal/fisiología , Drosophila/fisiología , Octopamina/fisiología , Temperatura , Animales , Drosophila/genética , Aprendizaje/fisiología , Memoria/fisiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/fisiología , Mutación/genética , Vías Olfatorias/fisiología , Transmisión Sináptica/fisiología
3.
Naturwissenschaften ; 96(8): 927-31, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19436983

RESUMEN

The level of conditioned behavior in animals is proportional to the intensity, amount, frequency, or probability of reinforcement. Interestingly, this matching can be dynamic, with performance levels following, for example, a switch in the probability of reinforcement with a short delay. We previously found that conditioned performance levels in Drosophila match reinforcement intensity in a place conditioning paradigm. Whether Drosophila can match conditioned behavior to a change in reinforcement intensity was an open question. In this study, we found that both conditioned behavior and memory levels match reinforcement intensity after a switch, and this rapid matching occurs within 2 min. Thus, fruit flies can dynamically match conditioned behavior and memory levels to a change in reinforcement intensity.


Asunto(s)
Drosophila/fisiología , Aprendizaje/fisiología , Animales , Reacción de Prevención , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Luz , Memoria/fisiología , Refuerzo en Psicología , Percepción Espacial , Temperatura
4.
Proc Natl Acad Sci U S A ; 105(14): 5579-84, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18385379

RESUMEN

Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory. In contrast, the role of the serotonergic system in reinforcing insect associative learning is either unclear or controversial. We investigated the role of both of these signals in operant place learning in Drosophila. By genetically altering serotonin and dopamine levels, manipulating the neurons that make serotonin and dopamine, and pharmacological treatments we provide clear evidence that serotonin, but not dopamine, is necessary for place memory. Thus, serotonin can be critical for memory formation in an insect, and dopamine is not a universal negatively reinforcing signal.


Asunto(s)
Aprendizaje por Asociación , Dopamina/fisiología , Memoria , Serotonina/fisiología , Animales , Drosophila , Aprendizaje , Neuronas/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-17551734

RESUMEN

Apparently unpaired exposure to appetitive or aversive stimuli can suppress or enhance later associative learning. While the suppressive effect has been found in both vertebrate and invertebrate animals, it is not clear if the enhancing effect is restricted to the vertebrates. Additionally, whether Drosophila associative learning can be influenced in either direction is open. To address these questions, we examined the effects of pre-exposing flies to a high temperature negative reinforcer in the heat-box place-learning paradigm. We found that pre-exposing flies to an unavoidable high temperature enhanced later associative conditioning that uses mild increases in temperature. This enhancement lasts at least 20 min, does not depend on changes in the straightforward avoidance behavior of a high temperature source, and is independent of the antennal thermosensor. We thus provide an example of enhanced associative learning after unpaired exposure to a typical reinforcer in an invertebrate animal, suggesting the conservation of this component of learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Drosophila/fisiología , Animales , Calor , Memoria/fisiología , Conducta Espacial/fisiología , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-16482440

RESUMEN

Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.


Asunto(s)
Reacción de Prevención/fisiología , Drosophila melanogaster/fisiología , Refuerzo en Psicología , Conducta Espacial/fisiología , Temperatura , Sensación Térmica/fisiología , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Condicionamiento Psicológico , Proteínas de Drosophila/genética , Modelos Biológicos
7.
Learn Mem ; 13(1): 72-83, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16418434

RESUMEN

Memories can have different strengths, largely dependent on the intensity of reinforcers encountered. The relationship between reinforcement and memory strength is evident in asymptotic memory curves, with the level of the asymptote related to the intensity of the reinforcer. Although this is likely a fundamental property of memory formation, relatively little is known of how memory strength is determined. Memory performance at different levels in Drosophila can be measured in an operant heat-box conditioning paradigm. In this spatial learning paradigm, flies learn and remember to avoid one-half of a dark chamber associated with a temperature outside of the preferred range. The reinforcement temperature has a strong effect on the level of learning in wild-type flies, with higher temperatures inducing stronger memories. Additionally, two mutations alter memory-acquisition curves, either changing acquisition rate or asymptotic memory level. The rutabaga mutation, affecting a type-1 adenylyl cyclase, decreases the acquisition rate. In contrast, the white mutation, modifying an ABC transporter, limits asymptotic memory. The white mutation does not negatively affect classical olfactory conditioning but actually improves performance at low reinforcement levels. Thus, memory acquisition/memory strength and classical olfactory/operant spatial memories can be genetically dissociated. A conceptual model of operant conditioning and the levels at which rutabaga and white influence conditioning is proposed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenilil Ciclasas/fisiología , Aprendizaje por Asociación/fisiología , Condicionamiento Operante/fisiología , Proteínas de Drosophila/fisiología , Proteínas del Ojo/fisiología , Memoria/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Adenilil Ciclasas/genética , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Femenino , Masculino , Mutación , Refuerzo en Psicología , Conducta Espacial/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA