Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(3): e2300549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38036303

RESUMEN

A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.


Asunto(s)
Heptanos , Triazoles , Relación Estructura-Actividad , Catálisis , Triazoles/farmacología , Antivirales/farmacología
2.
Molecules ; 28(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37959845

RESUMEN

A novel method for synthesizing 1,2,4-triazole- and tetrazole-containing 4H-thiopyrano[2,3-b]quinolines using a new combination of the thio-Michael and aza-Morita-Baylis-Hillman reactions was developed. Target compounds were evaluated for their cytotoxicities and antiviral activities against influenza A/Puerto Rico/8/34 virus in MDCK cells. The compounds showed low toxicity and some exhibited moderate antiviral activity. Molecular docking identified the M2 channel and polymerase basic protein 2 as potential targets. We observed that the antiviral activity of thiopyrano[2,3-b]quinolines is notably affected by both the nature and position of the substituent within the tetrazole ring, as well as the substituent within the benzene moiety of quinoline. These findings contribute to the further search for new antiviral agents against influenza A viruses among derivatives of thiopyrano[2,3-b]quinoline.


Asunto(s)
Quinolinas , Simulación del Acoplamiento Molecular , Quinolinas/farmacología , Antivirales/farmacología
3.
Antiviral Res ; 216: 105654, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327878

RESUMEN

Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Ratones , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Enterovirus/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Enterovirus Humano B
4.
Viruses ; 15(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112882

RESUMEN

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Orthomyxoviridae , Humanos , Proteínas Virales de Fusión/metabolismo , Coronavirus/metabolismo , Hemaglutininas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Fusión de Membrana , Orthomyxoviridae/metabolismo , Internalización del Virus
5.
Antiviral Res ; 212: 105575, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868316

RESUMEN

With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Fusión de Membrana , Antivirales/farmacología , Antivirales/química , Antirretrovirales/farmacología , Lipopéptidos/farmacología
6.
Microorganisms ; 11(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985255

RESUMEN

The influenza virus genome features a very high mutation rate leading to the rapid selection of drug-resistant strains. Due to the emergence of drug-resistant strains, there is a need for the further development of new potent antivirals against influenza with a broad activity spectrum. Thus, the search for a novel, effective broad-spectrum antiviral agent is a top priority of medical science and healthcare systems. In this paper, derivatives based on fullerenes with broad virus inhibiting activities in vitro against a panel of influenza viruses were described. The antiviral properties of water-soluble fullerene derivatives were studied. It was demonstrated that the library of compounds based on fullerenes has cytoprotective activity. Maximum virus-inhibiting activity and minimum toxicity were found with compound 2, containing residues of salts of 2-amino-3-cyclopropylpropanoic acid (CC50 > 300 µg/mL, IC50 = 4.73 µg/mL, SI = 64). This study represents the initial stage in a study of fullerenes as anti-influenza drugs. The results of the study lead us conclude that five leading compounds (1-5) have pharmacological prospects.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36960941

RESUMEN

A series of 1,2,3-triazolyl nucleoside analogues bearing N-acetyl-D-glucosamine residue was synthesized by the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of N1-ω-alkynyl derivatives of uracil, 6-methyluracil, thymine and 3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-ß-D-glucopyranosyl azide. Antiviral assays revealed the lead compound 3f which showed both the same activity against the influenza virus A H1N1 (IC50=70.7 µM) as the antiviral drug Rimantadine in control (IC50=77 µM) and good activity against Coxsackievirus B3 (IC50=13.9 µM) which was one and a half times higher than the activity of the antiviral drug Pleconaril in control (IC50=21.6 µM). According to molecular docking simulations, the antiviral activity of the lead compound 3f against Coxsackie B3 virus can be explained by its binding to a key fragment of the capsid surface of this virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Nucleósidos , Antivirales , Glucosamina/metabolismo , Acetilglucosamina , Simulación del Acoplamiento Molecular , Azidas
8.
Molecules ; 27(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432042

RESUMEN

This study of the interaction system of binucleophilic 3-substituted 4-amino-4H-1,2,4-triazole-5-thiols and 3-phenyl-2-propynal made it possible to develop a new approach to synthesis of such isomeric classes as 7-benzylidene-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and 8-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine. Among the 20 compounds studied in vitro against influenza A/Puerto Rico/8/34 (H1N1) virus, half of them demonstrated selectivity index (SI) of 10 or higher and one of them (4-((3-phenylprop-2-yn-1-yl)amino)-4H-1,2,4-triazole-3-thiol) possessed the highest (SI > 300). Docking results and values showed that the preferred interactant for our ligands was M2 proton channel of the influenza A virus. Protein-ligand interactions modeling showed that the aliphatic moiety of ligands could negatively regulate target activity level.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Tiadiazinas , Tiadiazinas/farmacología , Antivirales/farmacología , Triazoles/farmacología , Ligandos
9.
Life (Basel) ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36362987

RESUMEN

A series of novel 4-substituted sulfonamidobenzoic acid derivatives was synthesized as the structural evolution of 4-(4-(1,3-dioxoisoindolin-2-yl)phenylsulfonamido)benzoic acid, which is the known inhibitor of the enterovirus life cycle. Antiviral properties of prepared compounds were evaluated in vitro using phenotypic screening and viral yield reduction assay. Their capsid binding properties were verified in thermostability assay. We identified two new hit-compounds (4 and 7a) with high activity against the coxsackievirus B3 (Nancy, CVB3) strain with potencies (IC50 values of 4.29 and 4.22 µM, respectively) which are slightly superior to the reference compound 2a (IC50 5.54 µM). Both hits changed the heat inactivation of CVB3 in vitro to higher temperatures, suggesting that they are capsid binders, as 2a is. The results obtained can serve as a basis for further development of the lead compounds for novel drug design to combat enterovirus infection.

10.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234748

RESUMEN

A series of 5'-phosphorylated (dialkyl phosphates, diaryl phosphates, phosphoramidates, H-phosphonates, phosphates) 1,2,3-triazolyl nucleoside analogues in which the 1,2,3-triazole-4-yl-ß-D-ribofuranose fragment is attached via a methylene group or a butylene chain to the N-1 atom of the heterocycle moiety (uracil or quinazoline-2,4-dione) was synthesized. All compounds were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1). Antiviral assays revealed three compounds, 13b, 14b, and 17a, which showed moderate activity against influenza virus A (H1N1) with IC50 values of 17.9 µM, 51 µM, and 25 µM, respectively. In the first two compounds, the quinazoline-2,4-dione moiety is attached via a methylene or a butylene linker, respectively, to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-diphenyl phosphate substituent. In compound 17a, the uracil moiety is attached via the methylene unit to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-(phenyl methoxy-L-alaninyl)phosphate substituent. The remaining compounds appeared to be inactive against influenza virus A/PR/8/34/(H1N1). The results of molecular docking simulations indirectly confirmed the literature data that the inhibition of viral replication is carried out not by nucleoside analogues themselves, but by their 5'-triphosphate derivatives.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Organofosfonatos , Alquenos , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Nucleósidos/farmacología , Fosfatos , Quinazolinas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología , Uracilo
11.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014334

RESUMEN

New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48-88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73-95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity.


Asunto(s)
Disulfuros , Compuestos de Sulfhidrilo , Antifúngicos/farmacología , Antioxidantes/farmacología , Ésteres , Mutágenos
12.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807481

RESUMEN

A series of pyrimidine conjugates containing a fragment of racemic 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine and its (S)-enantiomer attached via a 6-aminohexanoyl fragment were synthesized by the reaction of nucleophilic substitution of chlorine in various chloropyrimidines. The structures of the synthesized compounds were confirmed by 1H, 19F, and 13C NMR spectral data. Enantiomeric purity of optically active derivatives was confirmed by chiral HPLC. Antiviral evaluation of the synthesized compounds has shown that the replacement of purine with a pyrimidine fragment leads to a decrease in the anti-herpesvirus activity compared to the lead compound, purine conjugate. The studied compounds did not exhibit significant activity against influenza A (H1N1) virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Antivirales/química , Benzoxazinas/química , Purinas , Pirimidinas/farmacología
13.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684482

RESUMEN

The application of non-planar scaffolds in drug design allows for the enlargement of the chemical space, and for the construction of molecules that have more effective target-ligand interactions or are less prone to the development of resistance. Among the works of the last decade, a literature search revealed spirothiazamenthane, which has served as a lead in the development of derivatives active against resistant viral strains. In this work, we studied the novel molecular scaffold, which resembles spirothiazamenthane, but combines isoxazoline as a heterocycle and cyclooctane ring as a hydrophobic part of the structure. The synthesis of new 3-nitro- and 3-aminoisoxazolines containing spiro-fused or 1,2-annelated cyclooctane fragments was achieved by employing 1,3-dipolar cycloaddition of 3-nitro-4,5-dihydroisoxazol-4-ol 2-oxide or tetranitromethane-derived alkyl nitronates with non-activated alkenes. A series of spiro-sulfonamides was obtained by the reaction of 3-aminoisoxazoline containing a spiro-fused cyclooctane residue with sulfonyl chlorides. Preliminary screening of the compounds for antiviral, antibacterial, antifungal and antiproliferative properties in vitro revealed 1-oxa-2-azaspiro[4.7]dodec-2-en-3-amine and 3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-amine with activity against the influenza A/Puerto Rico/8/34 (H1N1) virus in the submicromolar range, and high values of selectivity index. Further study of the mechanism of the antiviral action of these compounds, and the synthesis of their analogues, is likely to identify new agents against resistant viral strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Aminas/uso terapéutico , Antivirales/química , Ciclooctanos , Humanos , Gripe Humana/tratamiento farmacológico , Relación Estructura-Actividad
14.
Chem Heterocycl Compd (N Y) ; 58(4-5): 267-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645404

RESUMEN

3-{[(1-Methyl-1H-tetrazol-5-yl)imino]methyl}quinoline-2-thiol and 3-{[(2-methyl-2H-tetrazol-5-yl)imino]methyl}quinoline-2-thiol were synthesized. The sequence of the thiol-Michael reaction and the (aza)-Morita-Baylis-Hillman reaction yielded 4-[(1-methyl-1H-tetrazol-5-yl)amino]-2-phenyl-4H-thiopyrano[2,3-b]quinoline-3-carbaldehyde, 4-[(2-methyl-2H-tetrazol-5-yl)amino]-2-phenyl-4H-thiopyrano[2,3-b]-quinoline-3-carbaldehyde, and 4-hydroxy-2-phenyl-4H-thiopyrano[2,3-b]quinoline-3-carbaldehyde. Cytotoxicity and antiviral activity against the A/Puerto Rico/8/34 (H1N1) influenza virus strain in MDCK cell culture were determined for the obtained compounds. The study showed that the replacement of the hydroxyl group in 4-hydroxy-2-phenyl-4H-thiopyrano[2,3-b]quinoline-3-carbaldehyde with a 1-methyl- or 5-amino-2-methyltetrazolyl fragment decreased antiviral activity. At the same time, 3-{[(1-methyl-1H-tetrazol-5-yl)imino]-methyl}quinoline-2-thiol has a higher activity than 3-{[(2-methyl-2H-tetrazol-5-yl)imino]methyl}quinoline-2-thiol. This fact indicates a possible relationship between the arrangement of substituents in the tetrazole ring and the antiviral activity of the tested heterocyclic system. Supplementary Information: The online version contains supplementary material available at 10.1007/s10593-022-03083-w.

15.
Fundam Clin Pharmacol ; 36(3): 518-525, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34984730

RESUMEN

Due to high variability and rapid life cycle, influenza virus is able to develop drug resistance against direct-acting antivirals. Development of novel virus-in113039hibiting drugs is therefore important goal. Previously, we identified camphor derivative, camphecene, as an effective anti-influenza compound. In the present study, we optimize the regimen of its application to avoid high sub-toxic concentrations. The protective activity of camphecene was assessed on the model of lethal pneumonia of mice caused by influenza viruses. Camphecene was administered either once a day or four times a day, alone or in combination with Tamiflu. Mortality and viral titer in the lungs were studied. Pharmacokinetics of camphecene was studied in rabbits. We have demonstrated that camphecene, being used every 6 h at a dose of 7.5 mg/kg/day, results in antiviral effect that was statistically equal to the effect of 100 mg/kg/day once a day, that is, the same effect was achieved by 13 times lower daily dose of the drug. This effect was manifested in decrease of mortality and decrease of virus' titer in the lungs. The studies of pharmacokinetics of camphecene have demonstrated that it does not accumulate in blood plasma and that its m ultiple applications with dosage interval of 65 min are safe. In addition, the results of the study demonstrate also that camphecene possesses additive effect with Tamiflu, allowing to decrease the dose of the latter. The results suggest that due to safety and efficacy, camphecene can be further developed as potential anti-influenza remedy.


Asunto(s)
Hepatitis C Crónica , Gripe Humana , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Alcanfor/análogos & derivados , Alcanfor/farmacocinética , Etanolaminas , Humanos , Gripe Humana/tratamiento farmacológico , Ratones , Oseltamivir/uso terapéutico , Conejos
16.
J Biomol Struct Dyn ; 40(12): 5481-5492, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480324

RESUMEN

ABSTARCTThe development of new anti-influenza drugs remains an active area, and efforts in this direction will likely continue far into the future. In this paper, we present the results of a theoretical study explaining the mechanisms behind the antiviral activity of camphor derivatives. These include camphecene and a number of its analogues. The compounds tested can inhibit hemagglutinin (HA) by binding to it at two possible sites. Moreover, the binding site located at the site of proteolysis is the most important. Serial passaging of influenza in the presence of camphecene leads to the formation of mutation-associated resistance. Specifically, camphecene causes a significant mutation in HA (V615L). This substitution likely reduces the affinity of the compound for the binding site due to steric restriction of the positioning of camphecene in the binding cavity. Molecular dynamics (MD) simulation results show that the mutant HA is a more stable structure in terms of thermodynamics. In other words, launching conformational rearrangements preceding the transition from pre- to post-fusion requires more energy than in wild type HA. This may well explain the lower virulence seen with the camphecene-resistant strain.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Antivirales/metabolismo , Alcanfor/análogos & derivados , Alcanfor/farmacología , Alcanfor/uso terapéutico , Etanolaminas , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Simulación de Dinámica Molecular , Orthomyxoviridae/metabolismo , Virulencia/genética
17.
Bioorg Med Chem Lett ; 55: 128465, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808389

RESUMEN

This article describes the synthesis and antiviral activity evaluation of new substituted 1,2,4-oxadiazoles containing a bicyclic substituent at position 5 of the heterocycle and O-acylated amidoximes as precursors for their synthesis. New compounds were obtained from the (+)-camphor derivative (+)-ketopinic acid. The chemical library was tested in vitro for cytotoxicity against the MDCK cell line and for antiviral activity against influenza viruses of H1N1 and H7N9 subtypes. The synthesised compounds exhibited high virus-inhibiting activity against the H1N1 influenza virus. Some synthesised compounds were also active against the influenza virus of a different antigenic subtype: H7N9. The mechanism of the virus-inhibiting activity of these compounds is based on their interference with the fusion activity of viral hemagglutinin (HA). No interference with the receptor-binding activity of HA has been demonstrated. According to molecular docking results, the selective antiviral activity of O-acylated amidoximes and 1,2,4-oxadiazoles is associated with their structural features. O-Acylated amidoximes are likely more complementary to the binding site located at the site of the fusion peptide, and 1,2,4-oxadiazoles are more complimentary to the site located at the site of proteolysis. Significant differences in the amino acid residues of the binding sites of HA's of different types allow us to explain the selective antiviral activity of the compounds under study.


Asunto(s)
Antivirales/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Cetonas/farmacología , Oxadiazoles/farmacología , Oximas/farmacología , Acilación , Antivirales/síntesis química , Antivirales/química , Hidrocarburos Aromáticos con Puentes/química , Relación Dosis-Respuesta a Droga , Cetonas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad
18.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833886

RESUMEN

A number of framework amides with a ginsenol backbone have been synthesized using the Ritter reaction. We named the acetamide as Ginsamide. A method was developed for the synthesis of the corresponding amine and thioacetamide. The new compounds revealed a high activity against H1N1 influenza, which was confirmed using an animal model. Biological experiments were performed to determine the mechanism of action of the new agents, a ginsamide-resistant strain of influenza virus was obtained, and the pathogenicity of the resistant strain and the control strain was studied. It was shown that the emergence of resistance to Ginsamide was accompanied by a reduction in the pathogenicity of the influenza virus.


Asunto(s)
Antivirales/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Amidas/farmacología , Animales , Antivirales/aislamiento & purificación , Línea Celular , China , Farmacorresistencia Viral , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Sesquiterpenos/metabolismo
19.
Org Biomol Chem ; 19(45): 9925-9935, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34735561

RESUMEN

Heteroanalogs of ascidian alkaloids have been synthesized, and for the first time 10 different types of saturated carbo- and heteroannulated pyridones have been obtained. A new method for the formation of decahydro[1,3]oxazolo[2,3-j]quinoline and octahydro-5H-cyclopenta[b][1,3]oxazolo[3,2-a]pyridine was proposed. The synthesis of these heterocycles is based on the three-component cyclization of trifluoroacetoacetic ester and cycloketones with 1,2- and 1,3-dinucleophiles. It was found that reactions with amino alcohols are distinguished by the possibility of isolating carbocyclopyridones of various degrees of saturation. The diastereomeric structure of the synthesized heterocycles has been studied, and the mechanism of their formation has been proposed. Antitumor, anti-influenza and analgesic agents have been found among the synthesized compounds.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Alcaloides/síntesis química , Animales , Ciclización , Estructura Molecular , Urocordados
20.
Biomedicines ; 9(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34680551

RESUMEN

To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...