Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 914, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123567

RESUMEN

Self-emulsifying drug delivery systems (SEDDS) are a well-established formulation strategy for improving the oral bioavailability of poorly water-soluble drugs. Traditional development of these formulations relies heavily on empirical observation to assess drug and excipient compatibility, as well as to select and optimize the formulation compositions. The aim of this work was to leverage previously developed SEDDS in the literature to construct a comprehensive SEDDS dataset that can be used to gain insights and advance data-driven approaches to formulation development. A dataset comprised of 668 unique SEDDS formulations encompassing 20 poorly water-soluble drugs was curated. While there are still opportunities to enhance the quality and quantity of data on SEDDS, this research lays the groundwork to potentially simplify the SEDDS formulation development process.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , Emulsiones , Agua
2.
Expert Opin Drug Deliv ; 20(2): 241-257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36644850

RESUMEN

INTRODUCTION: Interest in nanomedicines has surged in recent years due to the critical role they have played in the COVID-19 pandemic. Nanoformulations can turn promising therapeutic cargo into viable products through improvements in drug safety and efficacy profiles. However, the developmental pathway for such formulations is non-trivial and largely reliant on trial-and-error. Beyond the costly demands on time and resources, this traditional approach may stunt innovation. The emergence of automation, artificial intelligence (AI) and machine learning (ML) tools, which are currently underutilized in pharmaceutical formulation development, offers a promising direction for an improved path in the design of nanomedicines. AREAS COVERED: the potential of harnessing experimental automation and AI/ML to drive innovation in nanomedicine development. The discussion centers on the current challenges in drug formulation research and development, and the major advantages afforded through the application of data-driven methods. EXPERT OPINION: The development of integrated workflows based on automated experimentation and AI/ML may accelerate nanomedicine development. A crucial step in achieving this is the generation of high-quality, accessible datasets. Future efforts to make full use of these tools can ultimately contribute to the development of more innovative nanomedicines and improved clinical translation of formulations that rely on advanced drug delivery systems.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Nanomedicina , Pandemias , Automatización
4.
Front Neurosci ; 15: 668293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867140

RESUMEN

Studying the molecular development of the human brain presents unique challenges for selecting a data analysis approach. The rare and valuable nature of human postmortem brain tissue, especially for developmental studies, means the sample sizes are small (n), but the use of high throughput genomic and proteomic methods measure the expression levels for hundreds or thousands of variables [e.g., genes or proteins (p)] for each sample. This leads to a data structure that is high dimensional (p ≫ n) and introduces the curse of dimensionality, which poses a challenge for traditional statistical approaches. In contrast, high dimensional analyses, especially cluster analyses developed for sparse data, have worked well for analyzing genomic datasets where p ≫ n. Here we explore applying a lasso-based clustering method developed for high dimensional genomic data with small sample sizes. Using protein and gene data from the developing human visual cortex, we compared clustering methods. We identified an application of sparse k-means clustering [robust sparse k-means clustering (RSKC)] that partitioned samples into age-related clusters that reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the genes or proteins contributing to partitioning samples into age-related clusters that progress across the lifespan. This approach addresses a problem in current studies that could not identify multiple postnatal clusters. Moreover, clusters encompassed a range of ages like a series of overlapping waves illustrating that chronological- and brain-age have a complex relationship. In addition, a recently developed workflow to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and revealed neurobiologically relevant features that identified how the human visual cortex changes across the lifespan. These methods can help address the growing demand for multimodal integration, from molecular machinery to brain imaging signals, to understand the human brain's development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA