Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell ; 84(13): 2525-2541.e12, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38906142

RESUMEN

The Integrator complex attenuates gene expression via the premature termination of RNA polymerase II (RNAP2) at promoter-proximal pausing sites. It is required for stimulus response, cell differentiation, and neurodevelopment, but how gene-specific and adaptive regulation by Integrator is achieved remains unclear. Here, we identify two sites on human Integrator subunits 13/14 that serve as binding hubs for sequence-specific transcription factors (TFs) and other transcription effector complexes. When Integrator is attached to paused RNAP2, these hubs are positioned upstream of the transcription bubble, consistent with simultaneous TF-promoter tethering. The TFs co-localize with Integrator genome-wide, increase Integrator abundance on target genes, and co-regulate responsive transcriptional programs. For instance, sensory cilia formation induced by glucose starvation depends on Integrator-TF contacts. Our data suggest TF-mediated promoter recruitment of Integrator as a widespread mechanism for targeted transcription regulation.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II , Factores de Transcripción , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Unión Proteica , Células HEK293 , Cilios/metabolismo , Cilios/genética
2.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625936

RESUMEN

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Asunto(s)
Cromatina , Proteínas Musculares , Desaminasas APOBEC/genética , Desaminasas APOBEC-1/genética , Diferenciación Celular/genética , Cromatina/genética , Citidina Desaminasa/metabolismo , ADN , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , Animales , Ratones
3.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559194

RESUMEN

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

4.
Blood ; 143(13): 1269-1281, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38197505

RESUMEN

ABSTRACT: Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Médula Ósea/patología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfocitos T CD8-positivos/patología , Recurrencia
5.
Mol Syst Biol ; 19(6): e11627, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37073532

RESUMEN

Enhancers play a vital role in gene regulation and are critical in mediating the impact of noncoding genetic variants associated with complex traits. Enhancer activity is a cell-type-specific process regulated by transcription factors (TFs), epigenetic mechanisms and genetic variants. Despite the strong mechanistic link between TFs and enhancers, we currently lack a framework for jointly analysing them in cell-type-specific gene regulatory networks (GRN). Equally important, we lack an unbiased way of assessing the biological significance of inferred GRNs since no complete ground truth exists. To address these gaps, we present GRaNIE (Gene Regulatory Network Inference including Enhancers) and GRaNPA (Gene Regulatory Network Performance Analysis). GRaNIE (https://git.embl.de/grp-zaugg/GRaNIE) builds enhancer-mediated GRNs based on covariation of chromatin accessibility and RNA-seq across samples (e.g. individuals), while GRaNPA (https://git.embl.de/grp-zaugg/GRaNPA) assesses the performance of GRNs for predicting cell-type-specific differential expression. We demonstrate their power by investigating gene regulatory mechanisms underlying the response of macrophages to infection, cancer and common genetic traits including autoimmune diseases. Finally, our methods identify the TF PURA as a putative regulator of pro-inflammatory macrophage polarisation.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias , Humanos , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , Neoplasias/genética , Elementos de Facilitación Genéticos/genética
6.
Mol Psychiatry ; 28(5): 2122-2135, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36782060

RESUMEN

MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.


Asunto(s)
Trastorno del Espectro Autista , Animales , Humanos , Ratones , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Haploinsuficiencia/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fenotipo , Factores de Transcripción/genética
7.
Nat Methods ; 20(2): 284-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36690741

RESUMEN

Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.


Asunto(s)
Mitocondrias , Ribosomas , Humanos , Células HeLa , Tomografía con Microscopio Electrónico/métodos , Retículo Endoplásmico , Procesamiento de Imagen Asistido por Computador/métodos
8.
Sci Rep ; 12(1): 16974, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217016

RESUMEN

Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.


Asunto(s)
Células Endoteliales , Hematopoyesis , Animales , Diferenciación Celular/genética , Células Endoteliales/metabolismo , Endotelio , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo
9.
Mol Syst Biol ; 18(8): e10855, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35959629

RESUMEN

The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Progresión de la Enfermedad , Humanos , Interleucina-4/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Proteínas Nucleares/genética , Pronóstico , Factores de Transcripción/genética , Trisomía , Microambiente Tumoral
10.
Sci Adv ; 8(35): eabq5206, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044572

RESUMEN

Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus. Using 13C-tracer analysis, we identified activity of glutamine-to-fumarate, citrate-to-succinate, and glutamine-to-aspartate routes in the nuclei of HeLa cells. Proximity labeling mass spectrometry revealed a spatial vicinity of the involved enzymes with core nuclear proteins. We further show nuclear localization of aconitase 2 and 2-oxoglutarate dehydrogenase in mouse embryonic stem cells. Nuclear localization of the latter enzyme, which produces succinyl-CoA, changed from pluripotency to a differentiated state with accompanying changes in the nuclear protein succinylation. Together, our results demonstrate operation of an extended metabolic pathway in the nucleus, warranting a revision of the canonical view on metabolic compartmentalization.

11.
Mol Syst Biol ; 18(8): e10473, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35996956

RESUMEN

Neuronal stimulation induced by the brain-derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF-specific chromatin-to-gene expression programs. Enhancer activation is an early event in the regulatory control of BDNF-treated neurons, where the bZIP motif-binding Fos protein pioneered chromatin opening and cooperated with co-regulatory transcription factors (Homeobox, EGRs, and CTCF) to induce transcription. Deleting cis-regulatory sequences affect BDNF-mediated Arc expression, a regulator of synaptic plasticity. BDNF-induced accessible regions are linked to preferential exon usage by neurodevelopmental disorder-related genes and the heritability of neuronal complex traits, which were validated in human iPSC-derived neurons. Thus, we provide a comprehensive view of BDNF-mediated genome regulatory features using comparative genomic approaches to dissect mammalian neuronal stimulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cromatina , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Cromatina/genética , Cromatina/metabolismo , Humanos , Mamíferos/genética , Ratones , Neuronas/metabolismo , Factores de Transcripción/metabolismo
12.
EMBO Mol Med ; 14(4): e14990, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253392

RESUMEN

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+ CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Quinasas Ciclina-Dependientes , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Sinergismo Farmacológico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Sulfonamidas/farmacología , Quinasa Activadora de Quinasas Ciclina-Dependientes
13.
Nat Protoc ; 16(12): 5673-5706, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773120

RESUMEN

Precise control of gene expression requires the coordinated action of multiple factors at cis-regulatory elements. We recently developed single-molecule footprinting to simultaneously resolve the occupancy of multiple proteins including transcription factors, RNA polymerase II and nucleosomes on single DNA molecules genome-wide. The technique combines the use of cytosine methyltransferases to footprint the genome with bisulfite sequencing to resolve transcription factor binding patterns at cis-regulatory elements. DNA footprinting is performed by incubating permeabilized nuclei with recombinant methyltransferases. Upon DNA extraction, whole-genome or targeted bisulfite libraries are prepared and loaded on Illumina sequencers. The protocol can be completed in 4-5 d in any laboratory with access to high-throughput sequencing. Analysis can be performed in 2 d using a dedicated R package and requires access to a high-performance computing system. Our method can be used to analyze how transcription factors cooperate and antagonize to regulate transcription.


Asunto(s)
Huella de ADN/métodos , Metilasas de Modificación del ADN/metabolismo , ADN/metabolismo , Genoma , Imagen Individual de Molécula/métodos , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , ADN/genética , Metilasas de Modificación del ADN/genética , Regulación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos , Factores de Transcripción/genética
14.
Trends Mol Med ; 27(11): 1060-1073, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34420874

RESUMEN

Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.


Asunto(s)
Elementos de Facilitación Genéticos , Epigenómica , Edición Génica , Genómica , Humanos
15.
Proteomics ; 21(23-24): e2000034, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34314098

RESUMEN

Transcription factors (TFs) are key regulators of intrinsic cellular processes, such as differentiation and development, and of the cellular response to external perturbation through signaling pathways. In this review we focus on the role of TFs as a link between signaling pathways and gene regulation. Cell signaling tends to result in the modulation of a set of TFs that then lead to changes in the cell's transcriptional program. We highlight the molecular layers at which TF activity can be measured and the associated technical and conceptual challenges. These layers include post-translational modifications (PTMs) of the TF, regulation of TF binding to DNA through chromatin accessibility and epigenetics, and expression of target genes. We highlight that a large number of TFs are understudied in both signaling and gene regulation studies, and that our knowledge about known TF targets has a strong literature bias. We argue that TFs serve as a perfect bridge between the fields of gene regulation and signaling, and that separating these fields hinders our understanding of cell functions. Multi-omics approaches that measure multiple dimensions of TF activity are ideally suited to study the interplay of cell signaling and gene regulation using TFs as the anchor to link the two fields.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Cromatina , Redes Reguladoras de Genes , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Cell Stem Cell ; 28(7): 1291-1306.e10, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848472

RESUMEN

Generation of induced oligodendrocyte progenitor cells (iOPCs) from somatic fibroblasts is a strategy for cell-based therapy of myelin diseases. However, iOPC generation is inefficient, and the resulting iOPCs exhibit limited expansion and differentiation competence. Here we overcome these limitations by transducing an optimized transcription factor combination into a permissive donor phenotype, the pericyte. Pericyte-derived iOPCs (PC-iOPCs) are stably expandable and functionally myelinogenic with high differentiation competence. Unexpectedly, however, we found that PC-iOPCs are metastable so that they can produce myelination-competent oligodendrocytes or revert to their original identity in a context-dependent fashion. Phenotypic reversion of PC-iOPCs is tightly linked to memory of their original transcriptome and epigenome. Phenotypic reversion can be disconnected from this donor cell memory effect, and in vivo myelination can eventually be achieved by transplantation of O4+ pre-oligodendrocytes. Our data show that donor cell source and memory can contribute to the fate and stability of directly converted cells.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Diferenciación Celular , Fibroblastos , Células Madre
17.
Cell Stem Cell ; 28(3): 472-487.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33352111

RESUMEN

Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations downstream of hematopoietic stem cells (HSCs)/multipotent progenitors (MPPs). Along this trajectory, we observed opposing patterns of chromatin accessibility and differentiation that coincided with dynamic changes in the activity of distinct lineage-specific transcription factors. Integrative analysis of chromatin accessibility and gene expression revealed extensive epigenetic but not transcriptional priming of HSCs/MPPs prior to their lineage commitment. Finally, we refined and functionally validated the sorting strategy for the HSCs/MPPs and achieved around 90% enrichment. Our study provides a useful framework for future investigation of human developmental hematopoiesis in the context of blood pathologies and regenerative medicine.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Hematopoyesis , Linaje de la Célula/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos , RNA-Seq , Análisis de la Célula Individual
18.
Mol Syst Biol ; 16(8): e9539, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32767663

RESUMEN

For most biological processes, organisms must respond to extrinsic cues, while maintaining essential gene expression programmes. Although studied extensively in single cells, it is still unclear how variation is controlled in multicellular organisms. Here, we used a machine-learning approach to identify genomic features that are predictive of genes with high versus low variation in their expression across individuals, using bulk data to remove stochastic cell-to-cell variation. Using embryonic gene expression across 75 Drosophila isogenic lines, we identify features predictive of expression variation (controlling for expression level), many of which are promoter-related. Genes with low variation fall into two classes reflecting different mechanisms to maintain robust expression, while genes with high variation seem to lack both types of stabilizing mechanisms. Applying this framework to humans revealed similar predictive features, indicating that promoter architecture is an ancient mechanism to control expression variation. Remarkably, expression variation features could also partially predict differential expression after diverse perturbations in both Drosophila and humans. Differential gene expression signatures may therefore be partially explained by genetically encoded gene-specific features, unrelated to the studied treatment.


Asunto(s)
Biología Computacional/métodos , Drosophila/genética , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas , Animales , Comunicación Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Aprendizaje Automático , Especificidad de la Especie
19.
Nature ; 583(7818): 737-743, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728247

RESUMEN

Physical interactions between distal regulatory elements have a key role in regulating gene expression, but the extent to which these interactions vary between cell types and contribute to cell-type-specific gene expression remains unclear. Here, to address these questions as part of phase III of the Encyclopedia of DNA Elements (ENCODE), we mapped cohesin-mediated chromatin loops, using chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), and analysed gene expression in 24 diverse human cell types, including core ENCODE cell lines. Twenty-eight per cent of all chromatin loops vary across cell types; these variations modestly correlate with changes in gene expression and are effective at grouping cell types according to their tissue of origin. The connectivity of genes corresponds to different functional classes, with housekeeping genes having few contacts, and dosage-sensitive genes being more connected to enhancer elements. This atlas of chromatin loops complements the diverse maps of regulatory architecture that comprise the ENCODE Encyclopedia, and will help to support emerging analyses of genome structure and function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Genoma Humano/genética , Anotación de Secuencia Molecular , Empalme Alternativo/genética , Diferenciación Celular/genética , Línea Celular , Células/metabolismo , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Humanos , Conformación Molecular , Regiones Promotoras Genéticas/genética , Cohesinas
20.
Cell Syst ; 10(6): 480-494.e8, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32553182

RESUMEN

Cellular differentiation requires dramatic changes in chromatin organization, transcriptional regulation, and protein production. To understand the regulatory connections between these processes, we generated proteomic, transcriptomic, and chromatin accessibility data during differentiation of mouse embryonic stem cells (ESCs) into postmitotic neurons and found extensive associations between different molecular layers within and across differentiation time points. We observed that SOX2, as a regulator of pluripotency and neuronal genes, redistributes from pluripotency enhancers to neuronal promoters during differentiation, likely driven by changes in its protein interaction network. We identified ATRX as a major SOX2 partner in neurons, whose co-localization correlated with an increase in active enhancer marks and increased expression of nearby genes, which we experimentally confirmed for three loci. Collectively, our data provide key insights into the regulatory transformation of SOX2 during neuronal differentiation, and we highlight the significance of multi-omic approaches in understanding gene regulation in complex systems.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Genómica/métodos , Neuronas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...