Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(1): 169-176, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34737212

RESUMEN

The growing use of neoadjuvant chemotherapy to treat advanced stage high-grade serous ovarian cancer (HGSOC) creates an opportunity to better understand chemotherapy-induced mutational and gene expression changes. Here we performed a cohort study including 34 patients with advanced stage IIIC or IV HGSOC to assess changes in the tumor genome and transcriptome in women receiving neoadjuvant chemotherapy. RNA sequencing and panel DNA sequencing of 596 cancer-related genes was performed on paired formalin-fixed paraffin-embedded specimens collected before and after chemotherapy, and differentially expressed genes (DEG) and copy-number variations (CNV) in pre- and post-chemotherapy samples were identified. Following tissue and sequencing quality control, the final patient cohort consisted of 32 paired DNA and 20 paired RNA samples. Genomic analysis of paired samples did not reveal any recurrent chemotherapy-induced mutations. Gene expression analyses found that most DEGs were upregulated by chemotherapy, primarily in the chemotherapy-resistant specimens. AP-1 transcription factor family genes (FOS, FOSB, FRA-1) were particularly upregulated in chemotherapy-resistant samples. CNV analysis identified recurrent 11q23.1 amplification, which encompasses SIK2. In vitro, combined treatment with AP-1 or SIK2 inhibitors with carboplatin or paclitaxel demonstrated synergistic effects. These data suggest that AP-1 activity and SIK2 copy-number amplification are induced by chemotherapy and may represent mechanisms by which chemotherapy resistance evolves in HGSOC. AP-1 and SIK2 are druggable targets with available small molecule inhibitors and represent potential targets to circumvent chemotherapy resistance. SIGNIFICANCE: Genomic and transcriptomic analyses identify increased AP-1 activity and SIK2 copy-number amplifications in resistant ovarian cancer following neoadjuvant chemotherapy, uncovering synergistic effects of AP-1 and SIK2 inhibitors with chemotherapy.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Terapia Neoadyuvante/métodos , Neoplasias Ováricas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología
2.
Methods Mol Biol ; 2424: 155-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34918293

RESUMEN

Cancer-associated fibroblasts (CAFs) play important roles in regulating tumor progression, metastasis, and response to therapies. Accurately modeling the interplay between cancer cells and the tumor microenvironment (TME) requires the use of primary cells from patient samples. Here we describe methods for the isolation of both primary CAFs and fibroblasts from omental tissue using a combination of mechanical dissociation and enzymatic digestion. Primary cells can be used for functional and mechanistic studies and may be safely cryopreserved.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Fibroblastos , Humanos , Epiplón , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA