Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558389

RESUMEN

AIM: Certain probiotic bacteria have been shown to possess an immunomodulatory effect and a protective effect on influenza infections. Using the Staphylococcus epidermidis K1 colonized mice model, we assessed the effect of nasal administration of glycerol or flavin mononucleotide (FMN) on the production of interleukin (IL)-6 mediated by the severe acute respiratory syndrome coronavirus 2 (SARS2-CoV) nucleocapsid protein (NPP). METHODS AND RESULTS: FMN, one of the key electron donors for the generation of electricity facilitated by S. epidermidis ATCC 12228, was detected in the glycerol fermentation medium. Compared to the S. epidermidis ATCC 12228, the S. epidermidis K1 isolate showed significant expression of the electron transfer genes, including pyruvate dehydrogenase (pdh), riboflavin kinase (rk), 1,4-dihydroxy-2-naphthoate octaprenyltransferase (menA), and type II NADH quinone oxidoreductase (ndh2). Institute of cancer research (ICR) mice were intranasally administered with S. epidermidis K1 with or without pretreatment with riboflavin kinase inhibitors, then nasally treated with glycerol or FMN before inoculating the NPP. Furthermore, J774A.1 macrophages were exposed to NPP serum and then treated with NPP of SARS2-CoV. The IL-6 levels in the bronchoalveolar lavage fluid (BALF) of mice and macrophages were quantified using a mouse IL-6 enzyme-linked immunosorbent assay kit. CONCLUSIONS: Here, we report that nasal administration of NPP strongly elevates IL-6 levels in both BALF and J774A.1 macrophages. It is worth noting that NPP-neutralizing antibodies can decrease IL-6 levels in macrophages. The nasal administration of glycerol or FMN to S. epidermidis K1-colonized mice results in a reduction of NPP-induced IL-6 production.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Cavidad Nasal , Staphylococcus epidermidis/metabolismo , Glicerol/metabolismo , Proteínas de la Nucleocápside/metabolismo
2.
Biomedicines ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36979656

RESUMEN

The mechanism behind how flavin mononucleotide (FMN)-producing bacteria attach to a host intestine remains unclear. In order to address this issue, this study isolated the Gram-positive bacteria Lactobacillus plantarum from Mongolian fermented Airag, named L. plantarum MA. These bacteria were further employed as the model microbes, and their electrogenic properties were first identified by their significant expression of type II NADH-quinone oxidoreductase. This study also demonstrated that the electrical activity of L. plantarum MA can be conducted through flavin mononucleotide (FMN)-based extracellular electron transfer, which is highly dependent on the presence of a carbon source in the medium. Our data show that approximately 15 µM of FMN, one of the key electron donors for the generation of electricity, can be produced from L. plantarum MA, as they were cultured in the presence of lactulose for 24 h. We further demonstrated that the electrical activity of L. plantarum MA can promote microbial adhesion and can thus enhance the colonization effectiveness of Caco-2 cells and mouse cecum. Such enhanced adhesiveness was attributed to the increased expression of type I collagens in the intestinal epithelium after treatment with L. plantarum MA. This study reveals the mechanism behind the electrogenic activity of L. plantarum MA and shows how the bacteria utilize electricity to modulate the protein expression of gut tissue for an enhanced adhesion process.

3.
Curr Microbiol ; 80(4): 128, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877314

RESUMEN

Biosynthesis of gamma-aminobutyric acid (GABA) can be achieved by naturally occurring microorganisms with the advantages of cost-effectiveness and safety. In this study, Bacillus amyloliquefaciens EH-9 strain (B. amyloliquefaciens EH-9), a soil bacterium, was used to promote the accumulation of GABA in germinated rice seed. Further, the topical application of supernatant from rice seed co-cultivated with soil B. amyloliquefaciens EH-9 can significantly increase the production of type I collagen (COL1) in the dorsal skin of mice. The knocking down of the GABA-A receptor (GABAA) significantly reduced the production of COL1 in the NIH/3T3 cells and in the dorsal skin of mice. This result suggests that topical application of GABA can promote the biosynthesis of COL1 via its interaction with the GABAA receptor in the dorsal skin of mice. In summary, our findings illustrate for the first time that soil B. amyloliquefaciens EH-9 elicits GABA production in germinated rice seed to upregulate the formation of COL1 in the dorsal skin of mice. This study is translational because the result shows a potential remedy for skin aging by stimulating COL1 synthesis using biosynthetic GABA associated with B. amyloliquefaciens EH-9.


Asunto(s)
Bacillus amyloliquefaciens , Oryza , Animales , Ratones , Regulación hacia Arriba , Colágeno Tipo I , Bacillus amyloliquefaciens/genética , Ácido gamma-Aminobutírico , Semillas , Suelo
4.
Arch Microbiol ; 204(11): 670, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241916

RESUMEN

Bacteria capable of producing electricity in intestinal microbiota have been discovered. However, no studies have explored butyric acid which generated by electrogenic bacteria on the host organism have significant physiological impacts on certain organs. We found that the capacity for electrical current generation by the commensal gut Leuconostoc mesenteroides EH-1 (L. mesenteroides EH-1) during glucose fermentation. The electricity production was essential for the gut colonization of L. mesenteroides EH-1 since the inhibition of electricity production by cyclophilin A inhibitor (TMN355) significantly diminished the number of bacteria attached to the human gut epithelial cell surface. The adipocyte differentiation contributes to the increased 4-hydroxy-2-nonenal (4-HNE), considered as a biomarker of reactive oxygen species (ROS). The effect of intestinal electrogenic microbiota in the high-fat diet (HFD)-induced 4-HNE and abdominal fat accumulation in mice was investigated in this study. The oral administration of glucose with a butyric acid-producing L. mesenteroides EH-1 bacterium attenuated the expression of 4-HNE and abdominal fat. The level of 4-HNE and abdominal fat depot were markedly increased in mice administered with cyclophilin A inhibitor-pretreated bacteria or GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Our studies suggest a novel means by which the probiotic bacteria can modulate fat mass deposition and oxidative stress via the cyclophilin A-mediated electron production and the butyric acid-activated Ffar2 pathway.


Asunto(s)
Leuconostoc mesenteroides , Grasa Abdominal/metabolismo , Animales , Bacterias/metabolismo , Ácido Butírico , Ciclofilina A/metabolismo , Dieta Alta en Grasa/efectos adversos , Electricidad , Ácidos Grasos no Esterificados/metabolismo , Fermentación , Glucosa/metabolismo , Humanos , Leuconostoc mesenteroides/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo
5.
J Nutr Biochem ; 98: 108821, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34271099

RESUMEN

Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. Mice intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signalling may provide targets for development of modalities including probiotics for treatment of the cytokine storm in COVID-19.


Asunto(s)
Proteínas M de Coronavirus/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Interleucina-6/metabolismo , Lacticaseibacillus rhamnosus/fisiología , Probióticos/farmacología , SARS-CoV-2/metabolismo , Animales , Ácido Butírico , Línea Celular , Clonación Molecular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Femenino , Fermentación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Ratones , Ratones Endogámicos ICR , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA