Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 12(3): e0126522, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36840573

RESUMEN

A draft genome sequence of Lactococcus lactis strain 12-16-PSH, which was isolated from prostokvasha, is reported. The genome assembly of strain 12-16-PSH contained 63 contigs, with a total length of 2,468,647 bp. A total of 2,421 protein-coding genes were predicted, among which 6 encoded bacteriocins while 15 encoded glycosyl transferases, presumably involved in exopolysaccharide biosynthesis.

2.
Microorganisms ; 12(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276185

RESUMEN

Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like ß-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries.

3.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363732

RESUMEN

Fermented milk products (FMPs) have numerous health properties, making them an important part of our nutrient budget. Based on traditions, history and geography, there are different preferences and recipes for FMP preparation in distinct regions of the world and Russia in particular. A number of dairy products, both widely occurring and region-specific, were sampled in the households and local markets of the Caucasus republics, Buryatia, Altai, and the Far East and European regions of Russia. The examined FMPs were produced from cow, camel, mare's or mixed milk, in the traditional way, without adding commercial starter cultures. Lactate and acetate were the major volatile fatty acids (VFA) of the studied FMPs, while succinate, formate, propionate and n-butyrate were present in lower concentrations. Bacterial communities analyzed by 16S rRNA gene V4 fragment amplicon sequencing showed that Firmicutes (Lactococcus, Lactobacillus, Streptococcus, Lentilactobacillus and Leuconostoc) was the predominant phylum in all analyzed FMPs, followed by Proteobacteria (Acetobacter, Klebsiella, Pseudomonas and Citrobacter). Lactobacillus (mainly in beverages) or Lactococcus (mainly in creamy and solid products) were the most abundant community-forming genera in FMPs where raw milk was used and fermentation took place at (or below) room temperature. In turn, representatives of Streptococcus genus dominated the FMPs made from melted or pasteurized milk and fermented at elevated temperatures (such as ryazhenka, cottage cheese and matsoni-like products). It was revealed that the microbial diversity of koumiss, shubat, ryazhenka, matsoni-like products, chegen, sour cream and bryndza varied slightly within each type and correlated well with the same products from other regions and countries. On the other hand, the microbiomes of kefir, prostokvasha, ayran, cottage cheese and suluguni-like cheese were more variable and were shaped by the influence of particular factors linked with regional differences and traditions expressed in specificities in the production process. The microbial diversity of aarts, khurunga, khuruud, tan, ayran and suluguni-like cheese was studied here, to our knowledge, for the first time. The results of this study emphasize the overall similarity of the microbial communities of various FMPs on the one hand, and specificities of regional products on the other. The latter are of particular value in the age of globalization when people have begun searching for new and unusual products and properties. Speaking more specifically, these novel products, with their characteristic communities, might be used for the development of novel microbial associations (i.e., starters) to produce novel products with improved or unique properties.

4.
Syst Appl Microbiol ; 44(4): 126230, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34293647

RESUMEN

A novel hyperthermophilic crenarchaeon, strain 3507LTT, was isolated from a terrestrial hot spring near Tinguiririca volcano, Chile. Cells were non-motile thin, slightly curved filamentous rods. It grew at 73-93 °C and pH range of 5 to 7.5 with an optimum at 85 °C and pH 6.0-6.7. The presence of culture broth filtrate of another hyperthemophilic archaeon as well as yeast extract was obligatory for growth of the novel isolate. Strain 3507LTT is an anaerobic chemoorganoheterotroph, fermenting monosaccharides, disaccharides and polysaccharides (lichenan, starch, xanthan gum, xyloglucan, alpha-cellulose and amorphous cellulose). No growth stimulation was detected when nitrate, thiosulfate, selenate or elemental sulfur were added as the electron acceptors. The complete genome of strain 3507LTT consisted of a single circular chromosome with size of 1.63 Mbp. The DNA G+C content was 53.9%. According to the 16S rRNA gene sequence as well as conserved protein sequences phylogenetic analyses, strain 3507LTT together with Thermofilum uzonense formed a separate cluster within a Thermofilaceae family (Thermoproteales/Thermoprotei/Crenarchaeota). Based on phenotypic characteristics, phylogeny as well as AAI comparisons, a novel genus and species Infirmifilum lucidum strain 3507LTT (=VKM B-3376T = KCTC 15797T) gen. nov. sp. nov. was proposed. Its closest relative, Thermofilum uzonense strain 1807-2T should be reclassified as Infirmifilum uzonense strain 1807-2T comb. nov. Finally, based on phylogenomic and comparative genome analyses of representatives of Thermofilaceae family and other representatives of Thermoproteales order, a proposal of transfer of the family Thermofilaceae into a separate order Thermofilales ord. nov. was made.


Asunto(s)
Manantiales de Aguas Termales/microbiología , Filogenia , Thermofilaceae , Técnicas de Tipificación Bacteriana , Composición de Base , Chile , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Thermofilaceae/clasificación , Thermofilaceae/aislamiento & purificación
5.
Front Microbiol ; 12: 734039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095781

RESUMEN

Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6-7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or ß-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous ß-glycosidase (EGIDFPOO_00532) with ß-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.

6.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303673

RESUMEN

A complete genome sequence of a hyperthermophilic archaeon, Thermosphaera sp. strain 3507, which was isolated from a Chilean hot spring, is presented. The genome is 1,305,106 bp with a G+C content of 47.6%. Twenty-seven carbohydrate-active enzyme genes were identified, which is in accordance with the ability of the strain to grow on various polysaccharides.

7.
Microorganisms ; 8(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867302

RESUMEN

Chukotka is an arctic region located in the continuous permafrost zone, but thermal springs are abundant there. In this study, for the first time, the microbial communities of the Chukotka hot springs (CHS) biofilms and sediments with temperatures 54-94 °C were investigated and analyzed by NGS sequencing of 16S rRNA gene amplicons. In microbial mats (54-75 °C), phototrophic bacteria of genus Chloroflexus dominated (up to 89% of all prokaryotes), while Aquificae were the most numerous at higher temperatures in Fe-rich sediments and filamentous "streamers" (up to 92%). The electron donors typical for Aquificae, such as H2S and H2, are absent or present only in trace amounts, and the prevalence of Aquificae might be connected with their ability to oxidize the ferrous iron present in CHS sediments. Armatimonadetes, Proteobacteria, Deinococcus-Thermus, Dictyoglomi, and Thermotogae, as well as uncultured bacteria (candidate divisions Oct-Spa1-106, GAL15, and OPB56), were numerous, and Cyanobacteria were present in low numbers. Archaea (less than 8% of the total community of each tested spring) belonged to Bathyarchaeota, Aigarchaeota, and Thaumarchaeota. The geographical location and the predominantly autotrophic microbial community, built on mechanisms other than the sulfur cycle-based ones, make CHS a special and unique terrestrial geothermal ecosystem.

8.
Int J Syst Evol Microbiol ; 70(4): 2726-2731, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32176605

RESUMEN

A moderately thermophilic, neutrophilic, aerobic, Gram-negative bacterium, strain 3729kT, was isolated from a thermal spring of the Chukotka Peninsula, Arctic region, Russia. It grew chemoorganoheterotrophically, utilizing proteinaceous substrates, including highly rigid keratins as well as various polysaccharides (glucomannan, locust bean gum, gum guar and xanthan gum). The major fatty acids of strain 3729kT were iso-C15 : 0 (60.9%), iso-C17 : 0 (12.0%), C16 : 0 (9.9%) and iso-C16 : 0 (7.4%). Isoprenoid quinones were Q-8 (95%) and Q-9 (5%). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and three unidentified polar lipids. Strain 3729kT was inhibited by chloramphenicol, neomycin, novobiocin, kanamycin, tetracycline, ampicillin and polymyxin B, but resistant to rifampicin, vancomycin and streptomycin. At the same time, strain 3729kT inhibited growth of Micrococcus luteus and its genome possessed genes for antimicrobial activity against Gram-positive bacteria (a single putative bacteriocin and several secreted lysozymes and peptidoglycan lytic transglycosylases). The DNA G+C content was 69.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis placed strain 3729kT into a distinct species/genus-level branch within the family Xanthomonadaceae (Proteobacteria). Phylogenetic analysis of 120 conservative protein sequences of all Xanthomonadaceae with validly published names and publicly available genomic sequences supported a species-level position of strain 3729kT within the genus Arenimonas. Pairwise ANI values between strain 3729kT and other Arenimonas species were of 75-80 %, supporting the proposal of a novel species. Accordingly, Arenimonas fontis sp. nov., with the type strain 3729kT (=VMK В-3232Т=DSM 105847T), was proposed.


Asunto(s)
Manantiales de Aguas Termales/microbiología , Filogenia , Xanthomonadaceae/clasificación , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Xanthomonadaceae/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 70(2): 1192-1202, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31769750

RESUMEN

A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).


Asunto(s)
Chloroflexi/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , Carotenoides/química , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
10.
Front Microbiol ; 10: 2972, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998263

RESUMEN

A novel hyperthermophilic, anaerobic filamentous archaeon, Thermofilum adornatum strain 1910bT, is capable of growing with cellulose as its sole carbon and energy source. This strain was isolated from a terrestrial hot spring in Kamchatka, Russia. The isolate 1910bT grew optimally at a temperature of 80°C and a pH of 5.5-6.0, producing cell-bound inducible cellulases. During genome analysis, genes, encoding various glycosidases (GHs) involved in oligo- and polysaccharide hydrolysis and genes for the fermentation of sugars were identified. No homologs of currently known cellulase families were found among the GHs encoded by the 1910bT genome, suggesting that novel proteins are involved. To figure this out, a proteomic analysis of cells grown on cellulose or pyruvate (as a control) was performed. Both in-depth genomic and proteomic analyses revealed four proteins (Cel25, Cel30, Cel40, and Cel45) that were the most likely to be involved in the cellulose hydrolysis in this archaeon. Two of these proteins (Cel30 and Cel45) were hypothetical according to genome analysis, while the other two (Cel25 and Cel40) have GH3 and GH1 domains, respectively. The respective genes were heterologously expressed in Escherichia coli BL21 (DE3), and enzymatic activities of recombinant proteins were measured with carboxymethyl cellulose (CMC), Avicel and cellobiose as substrates. It was revealed that the Cel30 and Cel25 proteins were likely exoglucanases with side beta-glucosidase and endoglucanase activities, that Cel40 was a multifunctional glucanase capable of hydrolyzing beta-1,4-glucosides of various lengths, and that Cel45 was an endoglucanase with side exoglucanase activity. Taking into account that the cellulolytic activity of T. adornatum 1910bT surface protein fractions was inducible, that recombinant Cel25 and Cel30 were much less active than Cel40 and Cel45, and that their gene expressions were (almost) non-induced by CMC, we suggest that Cel40 and Cel45 play a major role in the degradation of cellulose, while Cel25 and Cel30 act only as accessory enzymes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...