Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400077, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599586

RESUMEN

Following biomaterial implantation, a failure to resolve inflammation during the formation of a fracture hematoma can significantly limit the biomaterial's ability to facilitate bone regeneration. This study aims to combine the immunomodulatory and osteogenic effects of BMP-7 and IL-10 with the regenerative capacity of collagen-hydroxyapatite (CHA) scaffolds to enhance in vitro mineralization in a hematoma-like environment. Incubation of CHA scaffolds with human whole blood leads to rapid adsorption of fibrinogen, significant stiffening of the scaffold, and the formation of a hematoma-like environment characterized by a limited capacity to support the infiltration of human bone progenitor cells, a significant upregulation of inflammatory cytokines and acute phase proteins, and significantly reduced osteoconductivity. CHA scaffolds functionalized with BMP-7 and IL-10 significantly downregulate the production of key inflammatory cytokines, including IL-6, IL-8, and leptin, creating a more permissive environment for mineralization, ultimately enhancing the biomaterial's osteoconductivity. In conclusion, targeting the onset of inflammation in the early phase of bone healing using BMP-7 and IL-10 functionalized CHA scaffolds is a promising approach to effectively downregulate inflammatory processes, while fostering a more permissive environment for bone regeneration.

2.
IEEE Trans Med Imaging ; PP2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437150

RESUMEN

Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.

3.
J Imaging ; 10(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535140

RESUMEN

The rate of parental consent for fetal and perinatal autopsy is decreasing, whereas parents are more likely to agree to virtual autopsy by non-invasive imaging methods. Fetal and perinatal virtual autopsy needs high-resolution and good soft-tissue contrast for investigation of the cause of death and underlying trauma or pathology in fetuses and stillborn infants. This is offered by micro-computed tomography (CT), as opposed to the limited resolution provided by clinical CT scanners, and this is one of the most promising tools for non-invasive perinatal postmortem imaging. We developed and optimized a micro-CT scanner with a dual-energy imaging option. It is dedicated to post-mortem CT angiography and virtual autopsy of fetuses and stillborn infants in that the chamber can be cooled down to around 5 °C; this increases tissue rigidity and slows decomposition of the native specimen. This, together with the dedicated gantry-based architecture, attempts to reduce potential motion artifacts. The developed methodology is based on prior endovascular injection of a BaSO4-based contrast agent. We explain the design choices and considerations for this scanner prototype. We give details of the treatment of the optimization of the dual-energy and virtual mono-energetic imaging option that has been based on minimizing noise propagation and maximizing the contrast-to-noise ratio for vascular features. We demonstrate the scanner capabilities with proof-of-concept experiments on phantoms and stillborn piglets.

4.
J Orthop Res ; 42(4): 777-787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37975250

RESUMEN

Analysis of polyethylene (PE) wear in knee implants is crucial for understanding the factors leading to revision in total knee arthroplasty. Importantly, current experimental and computational methods for predicting insert wear can only be validated against true in vivo measurements from retrievals. This study quantitatively investigated in vivo PE wear rates in fixed-bearing (FB) (n = 21) and rotating-platform (n = 53) implant retrievals. 3D surface geometry of the retrievals was measured using a structured light scanner. Then, a reference surface that included the deformation, but not the wear that the retrievals had experienced in vivo, was constructed using a fully automatic surface reconstruction algorithm. Finally, wear volume was calculated from the deviation between the worn and reconstructed surfaces. The measurement and analysis techniques were validated and the algorithm was found to produce errors of only 0.2% relative to the component volumes. In addition to quantifying cohort-level wear rates, the effect of mechanical axis limb alignment on mediolateral wear distribution was examined for a subset of the retrievals (n = 14 + 26). Our results show that FB implants produce significantly (p = 0.04) higher topside wear rates (24.6 ± 10.1 mm3/year) than rotating-platform implants (15.3 ± 8.0 mm3/year). This effect was larger than that of limb alignment, which had a smaller and nonsignificant influence on overall wear rates (+4.5 ± 11.6 mm3/year, p = 0.43). However, increased varus alignment was associated significantly with greater medial compartment wear in both the FB and rotating-platform designs (+1.7 ± 1.3%/° and +1.8 ± 1.6%/°). Our findings emphasize the importance of implant design and limb alignment on wear outcomes, providing reference data for improving implant performance and longevity.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Humanos , Diseño de Prótesis , Artroplastia de Reemplazo de Rodilla/métodos , Polietileno , Propiedades de Superficie , Articulación de la Rodilla/cirugía , Falla de Prótesis
5.
Chimia (Aarau) ; 77(3): 104-109, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38047811

RESUMEN

By using silver (Ag) in nanostructured (nanowire, nanosphere, etc.) or thin-layer form as a catalyst for electrochemical CO2 reduction, very high CO-forming selectivity of almost 100% can be achieved. Supported by gas diffusion layers (GDLs),  the reactant CO2 in the gas phase can approach and potentially access active Ag sites, which allows current densities in the range of a few hundred mA cm-2 to be reached. Yet, the stability of gas diffusion electrode (GDE) based electrochemical CO2-to-CO converters is far from perfect, and the activity of GDE cathodes, especially when operated at high current densities, often significantly decays during electrolyses after no more than a few hours. The primary reason of stability losses in GDE-based CO2-to-CO electrolysers is flooding: that is, the excess wetting of the GDE that prevents CO2 from reaching Ag catalytic sites. In the past years, the authors of this paper at Empa and at the University of Bern, cooperating with other partners of the National Competence Center for Research (NCCR) on Catalysis, took different approaches to overcome flooding. While opinions differ with regard to where the first line of defense in protecting GDEs from flooding should lie, a comparison of the recent results of the two groups gives unique insight into the nature of processes occurring in GDE cathodes used for CO2 electrolysis.

6.
J Assoc Res Otolaryngol ; 24(4): 441-452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37407801

RESUMEN

PURPOSE: The osseous spiral lamina (OSL) is an inner cochlear bony structure that projects from the modiolus from base to apex, separating the cochlear canal into the scala vestibuli and scala tympani. The porosity of the OSL has recently attracted the attention of scientists due to its potential impact on the overall sound transduction. The bony pillars between the vestibular and tympanic plates of the OSL are not always visible in conventional histopathological studies, so imaging of such structures is usually lacking or incomplete. With this pilot study, we aimed, for the first time, to anatomically demonstrate the OSL in great detail and in 3D. METHODS: We measured width, thickness, and porosity of the human OSL by microCT using increasing nominal resolutions up to 2.5-µm voxel size. Additionally, 3D models of the individual plates at the basal and middle turns and the apex were created from the CT datasets. RESULTS: We found a constant presence of porosity in both tympanic plate and vestibular plate from basal turn to the apex. The tympanic plate appears to be more porous than vestibular plate in the basal and middle turns, while it is less porous in the apex. Furthermore, the 3D reconstruction allowed the bony pillars that lie between the OSL plates to be observed in great detail. CONCLUSION: By enhancing our comprehension of the OSL, we can advance our comprehension of hearing mechanisms and enhance the accuracy and effectiveness of cochlear models.


Asunto(s)
Cóclea , Audición , Humanos , Lámina Espiral , Microtomografía por Rayos X , Proyectos Piloto , Cóclea/patología , Audición/fisiología
7.
Acta Biomater ; 169: 138-154, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517619

RESUMEN

Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.


Asunto(s)
Bioprótesis , Calcinosis , Insuficiencia Cardíaca , Prótesis Valvulares Cardíacas , Animales , Bovinos , Válvulas Cardíacas , Colágeno , Válvula Aórtica/cirugía
8.
Opt Express ; 31(11): 17964-17986, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381517

RESUMEN

Laser ablation is nowadays an extensively applied technology to probe the chemical composition of solid materials. It allows for precise targeting of micrometer objects on and in samples, and enables chemical depth profiling with nanometer resolution. An in-depth understanding of the 3D geometry of the ablation craters is crucial for precise calibration of the depth scale in chemical depth profiles. Herein we present a comprehensive study on laser ablation processes using a Gaussian-shaped UV-femtosecond irradiation source and present how the combination of three different imaging methods (scanning electron microscopy, interferometric microscopy, and X-ray computed tomography) can provide accurate information on the crater's shapes. Crater analysis by applying X-ray computed tomography is of considerable interest because it allows the imaging of an array of craters in one step with sub-µm accuracy and is not limited to the aspect ratio of the crater. X-ray computed tomography thereby complements the analysis of laser ablation craters. The study investigates the effect of laser pulse energy and laser burst count on a single crystal Ru(0001) sample. Single crystals ensure that there is no dependence on the grain orientations during the laser ablation process. An array of 156 craters of different dimensions ranging from <20 nm to ∼40 µm in depth were created. For each individually applied laser pulse, we measured the number of ions generated in the ablation plume with our laser ablation ionization mass spectrometer. We show to which extent the combination of these four techniques reveals valuable information on the ablation threshold, the ablation rate, and the limiting ablation depth. The latter is expected to be a consequence of decreasing irradiance upon increasing crater surface area. The ion signal generated was found to be proportional to the volume ablated up to the certain depth, which enables in-situ depth calibration during the measurement.

9.
J Neuroradiol ; 50(3): 352-360, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36649796

RESUMEN

Following the advent of mechanical thrombectomy, occlusive clots in ischemic stroke have been amply characterized using conventional histopathology. Many studies have investigated the compositional variability of thrombi and the consequences of thrombus composition on treatment response. More recent evidence has emerged about the spatial heterogeneity of the clot or the preferential distribution of its components and compact nature. Here we review this emerging body of evidence, discuss its potential clinical implications, and propose the development of adequate characterization techniques.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Tromboembolia , Trombosis , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Trombectomía/métodos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Trombosis/complicaciones , Trombosis/diagnóstico por imagen , Trombosis/patología
10.
Mater Horiz ; 10(1): 257-267, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36409220

RESUMEN

Buildings are significant end-users of global energy. About 20% of the energy consumption worldwide is used for maintaining a comfortable indoor climate. Therefore, passive systems for indoor temperature and humidity regulation that can respond to environmental changes are very promising to reduce buildings' energy consumption. We developed a process to improve the responsiveness of wood to humidity changes by laser-drilling microscopic holes and incorporating a hygroscopic salt (calcium chloride). The resulting "transpiring wood" displays superior water adsorption capacity and high moisture exchange rate, allowing regulation of humidity and temperature by the exchange of moisture with the surrounding air. We proved that the hygrothermal performance of transpiring wood can be used to regulate indoor climate, with associated energy savings, for various climate types, thus favoring its application in the building sector. The reduction of temperature fluctuations, thanks to the buffering of temperature peaks, can lead to an indirect energy saving of about 10% for cooling and between 4-27% for heating depending on the climate. Furthermore, our transpiring wood meets different sustainability criteria, from raw materials to the fabrication process, resulting in a product with a low overall environmental impact and that is easy to recycle.


Asunto(s)
Conservación de los Recursos Energéticos , Madera , Conservación de los Recursos Energéticos/métodos , Clima , Temperatura , Frío
11.
Materials (Basel) ; 15(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500102

RESUMEN

The mechanical properties of cured wood adhesive films were tested in a dry state by means of nanoindentation. These studies have found that the application of adhesives have an effect on the accuracy of the hardness and elastic modulus determination. The highest values of hardness among the tested adhesives at 20 °C have condensation resins: MF (0.64 GPa) and RPF (0.52 GPa). Then the decreasing EPI (0.43 GPa), PUR (0.23 GPa) and PVAc (0.14 GPa) adhesives. The values of the elastic modulus look a little bit different. The highest values among the tested adhesives at 20 °C have EPI (11.97 GPa), followed by MF (10.54 GPa), RPF (7.98 GPa), PVAc (4.71 GPa) and PUR (3.37 GPa). X-ray micro-computed tomography was used to evaluate the adhesive joint by the determination of the voids. It has been proven that this value depends on the type of adhesive, glue quantity and reactivity. The highest values of the void ratio achieve the PUR (17.26%) adhesives, then PVAc (13.97%), RRF (6.88%), MF (1.78%) and EPI (0.03%). The ratio of the gaps increases with the higher joint thickness. A too high proportion of voids may weaken the adhesive joint.

12.
PLoS One ; 17(10): e0275891, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227883

RESUMEN

In recent years, insect husbandry has seen an increased interest in order to supply in the production of raw materials, food, or as biological/environmental control. Unfortunately, large insect rearings are susceptible to pathogens, pests and parasitoids which can spread rapidly due to the confined nature of a rearing system. Thus, it is of interest to monitor the spread of such manifestations and the overall population size quickly and efficiently. Medical imaging techniques could be used for this purpose, as large volumes can be scanned non-invasively. Due to its 3D acquisition nature, computed tomography seems to be the most suitable for this task. This study presents an automated, computed tomography-based, counting method for bee rearings that performs comparable to identifying all Osmia cornuta cocoons manually. The proposed methodology achieves this in an average of 10 seconds per sample, compared to 90 minutes per sample for the manual count over a total of 12 samples collected around lake Zurich in 2020. Such an automated bee population evaluation tool is efficient and valuable in combating environmental influences on bee, and potentially other insect, rearings.


Asunto(s)
Insectos , Tomografía , Animales , Abejas , Densidad de Población
13.
J Mater Chem A Mater ; 10(32): 16803-16812, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092378

RESUMEN

MgO is a promising solid oxide-based sorbent to capture anthropogenic CO2 emissions due to its high theoretical gravimetric CO2 uptake and its abundance. When MgO is coated with alkali metal salts such as LiNO3, NaNO3, KNO3, or their mixtures, the kinetics of the CO2 uptake reaction is significantly faster resulting in a 15 times higher CO2 uptake compared to bare MgO. However, the underlying mechanism that leads to this dramatic increase in the carbonation rate is still unclear. This study aims to determine the most favourable location for the nucleation and growth of MgCO3 and more specifically, whether the carbonation occurs preferentially at the buried interface, the triple phase boundary (TPB), and/or inside the molten salt of the NaNO3-MgO system. For this purpose, a model system consisting of a MgO single crystal that is structured by ultra-short pulse laser ablation and coated with NaNO3 as the promoter is used. To identify the location of nucleation and growth of MgCO3, micro X-ray computed tomography, scanning electron microscopy, Raman microspectroscopy and optical profilometry were applied. We found that MgCO3 forms at the NaNO3/MgO interface and not inside the melt. Moreover, there was no preferential nucleation of MgCO3 at the TPB when compared to the buried interface. Furthermore, it is found that there is no observable CO2 diffusion limitation in the nucleation step. However, it was observed that CO2 diffusion limits MgCO3 crystal growth, i.e. the growth rate of MgCO3 is approximately an order of magnitude faster in shallow grooves compared to that in deep grooves.

14.
Adv Sci (Weinh) ; 9(20): e2200136, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35521972

RESUMEN

Ablation of materials in combination with element-specific analysis of the matter released is a widely used method to accurately determine a material's chemical composition. Among other methods, repetitive ablation using femto-second pulsed laser systems provides excellent spatial resolution through its incremental removal of nanometer thick layers. The method can be combined with high-resolution mass spectrometry, for example, laser ablation ionization mass spectrometry, to simultaneously analyze chemically the material released. With increasing depth of the volume ablated, however, secondary effects start to play an important role and the ablation geometry deviates substantially from the desired cylindrical shape. Consequently, primarily conical but sometimes even more complex, rather than cylindrical, craters are created. Their dimensions need to be analyzed to enable a direct correlation with the element-specific analytical signals. Here, a post-ablation analysis method is presented that combines generic polydimethylsiloxane-based molding of craters with the volumetric reconstruction of the crater's inverse using X-ray computed tomography. Automated analysis yields the full, sub-micron accurate anatomy of the craters, thereby a scalable and generic method to better understand the fundamentals underlying ablation processes applicable to a wide range of materials. Furthermore, it may serve toward a more accurate determination of heterogeneous material's composition for a variety of applications without requiring time- and labor-intensive analyses of individual craters.


Asunto(s)
Terapia por Láser , Rayos Láser , Espectrometría de Masas/métodos , Tomografía Computarizada por Rayos X
16.
Sci Rep ; 12(1): 2778, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177767

RESUMEN

We have demonstrated the capability of laboratory propagation-based microtomography (miroCT) in non-destructive 3D virtual histopathology of human blood clots without any contrast agent. The volumetric information are valuable to understand the mechanical properties of clots which are crucial in selecting the most efficient mechanical thrombectomy method for clot extraction. Different clot types retrieved by mechanical thrombectomy from patient victims of acute ischemic stroke were evaluated through propagation-based microCT. The results were correlated with high-resolution scanning electron microscopy (SEM) images, confirming detected cellular and fibrillary structures. Calcifications appeared as glassy opacity areas with relatively intense signal on microCT images, also proved by energy-dispersive spectroscopy and X-ray diffraction. Hyperintense regions on the microCT corresponded to individual or compact aggregates of red blood cells, whereas fibrin dominated volumes appeared at consistently moderate to low normalized microCT values. Red blood cell shapes and sizes are consistent with the SEM observations. Together with other potential parameters, 3D porosity distribution and volume fraction of structures can be easily measured by microCT data. Further development of automated post-processing techniques for X-ray propagation-based micro/nanoCT, also based on machine learning algorithms, can enable high throughput analysis of blood clot composition and their 3D histological features on large sample cohorts.


Asunto(s)
Trombosis/diagnóstico por imagen , Microtomografía por Rayos X , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Microscopía Electrónica de Rastreo , Trombectomía
17.
J Imaging ; 8(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35049853

RESUMEN

This article describes the implementation of an efficient and fast in-house computed tomography (CT) reconstruction framework. The implementation principles of this cone-beam CT reconstruction tool chain are described here. The article mainly covers the core part of CT reconstruction, the filtered backprojection and its speed up on GPU hardware. Methods and implementations of tools for artifact reduction such as ring artifacts, beam hardening, algorithms for the center of rotation determination and tilted rotation axis correction are presented. The framework allows the reconstruction of CT images of arbitrary data size. Strategies on data splitting and GPU kernel optimization techniques applied for the backprojection process are illustrated by a few examples.

18.
Front Radiol ; 2: 965474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37492684

RESUMEN

Purpose: Otospongiotic plaques can be seen on conventional computed tomography (CT) as focal lesions around the cochlea. However, the resolution remains insufficient to enable evaluation of intracochlear damage. MicroCT technology provides resolution at the single micron level, offering an exceptional amplified view of the otosclerotic cochlea. In this study, a non-decalcified otosclerotic cochlea was analyzed and reconstructed in three dimensions for the first time, using microCT technology. The pre-clinical relevance of this study is the demonstration of extensive pro-inflammatory buildup inside the cochlea which cannot be seen with conventional cone-beam CT (CBCT) investigation. Materials and Methods: A radiological and a three-dimensional (3D) anatomical study of an otosclerotic cochlea using microCT technology is presented here for the first time. 3D-segmentation of the human cochlea was performed, providing an unprecedented view of the diseased area without the need for decalcification, sectioning, or staining. Results: Using microCT at single micron resolution and geometric reconstructions, it was possible to visualize the disease's effects. These included intensive tissue remodeling and highly vascularized areas with dilated capillaries around the spongiotic foci seen on the pericochlear bone. The cochlea's architecture as a morphological correlate of the otosclerosis was also seen. With a sagittal cut of the 3D mesh, it was possible to visualize intense ossification of the cochlear apex, as well as the internal auditory canal, the modiolus, the spiral ligament, and a large cochleolith over the osseous spiral lamina. In addition, the oval and round windows showed intense fibrotic tissue formation and spongiotic bone with increased vascularization. Given the recently described importance of the osseous spiral lamina in hearing mechanics and that, clinically, one of the signs of otosclerosis is the Carhart notch observed on the audiogram, a tonotopic map using the osseous spiral lamina as region of interest is presented. An additional quantitative study of the porosity and width of the osseous spiral lamina is reported. Conclusion: In this study, structural anatomical alterations of the otosclerotic cochlea were visualized in 3D for the first time. MicroCT suggested that even though the disease may not appear to be advanced in standard clinical CT scans, intense tissue remodeling is already ongoing inside the cochlea. That knowledge will have a great impact on further treatment of patients presenting with sensorineural hearing loss.

19.
J Microsc ; 282(2): 123-135, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33219697

RESUMEN

In-line, or propagation-based phase-contrast X-ray imaging (PBI) is an attractive alternative to the attenuation-based modality for low-density, soft samples showing low attenuation contrast. With the growing availability of micro- and nano-focus X-ray tubes, the method is increasingly applied in the laboratory. Here, we discuss the technique and demonstrate its advantages for selected low-density, low attenuation material samples using a lab-based micro- and nano-computed tomography systems Easytom XL Ultra, providing micron and sub-micron range resolution PBI images. We demonstrate a multi-step optimization of the lab-based PBI technique on our scanner that includes choosing the optimal detector-source hardware combination available in the setup, then optimizing the imaging geometry and finally the phase retrieval process through a parametric study. We point out and elaborate on the effect of noise correlation and texturing due to phase retrieval. We demonstrate the overall benefits of using the phase image and the phase retrieval for the selected samples such as improved image quality, increased contrast-to-noise ratio while only marginally influencing the spatial resolution. The improvement in image quality also enables further image processing steps for detailed structural analysis of the samples, which would be much more complicated if not impossible based on the transmission image.

20.
Langmuir ; 36(40): 11787-11797, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32936649

RESUMEN

We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...