Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(24): 16492-16498, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306624

RESUMEN

Both gallium nitride (GaN) and hybrid organic-inorganic perovskites such as methylammonium lead iodide (MAPbI3) have significantly influenced modern optoelectronics. Both marked a new beginning in the development of important branches in the semiconductor industry. For GaN, it is solid-state lighting and high-power electronics, and for MAPbI3, it is photovoltaics. Today, both are widely incorporated as building blocks in solar cells, LEDs and photodetectors. Regarding multilayers, and thus multi-interfacial construction of such devices, an understanding of the physical phenomena governing electronic transport at the interfaces is relevant. In this study, we present the spectroscopic investigation of carrier transfer across the MAPbI3/GaN interface by contactless electroreflectance (CER) for n-type and p-type GaN. The effect of MAPbI3 on the Fermi level position at the GaN surface was determined which allowed us to draw conclusions about the electronic phenomena at the interface. Our results show that MAPbI3 shifts the surface Fermi level deeper inside the GaN bandgap. Regarding different surface Fermi level positions for n-type and p-type GaN, we explain this as carrier transfer from GaN to MAPbI3 for n-type GaN and in the opposite direction for p-type GaN. We extend our outcomes with a demonstration of a broadband and self-powered MAPbI3/GaN photodetector.

2.
ACS Appl Mater Interfaces ; 14(4): 6131-6137, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35043636

RESUMEN

Hexagonal boron nitride (h-BN), together with other members of the van der Waals crystal family, has been studied for over a decade, both in terms of fundamental and applied research. Up to now, the spectrum of h-BN-based devices has broadened significantly, and systems containing the h-BN/III-V junctions have gained substantial interest as building blocks in, inter alia, light emitters, photodetectors, or transistor structures. Therefore, the understanding of electronic phenomena at the h-BN/III-V interfaces becomes a question of high importance regarding device engineering. In this study, we present the investigation of electronic phenomena at the h-BN/GaN interface by means of contactless electroreflectance (CER) spectroscopy. This nondestructive method enables precise determination of the Fermi level position at the h-BN/GaN interface and the investigation of carrier transport across the interface. CER results showed that h-BN induces an enlargement of the surface barrier height at the GaN surface. Such an effect translates to Fermi level pinning deeper inside the GaN band gap. As an explanation, we propose a mechanism based on electron transfer from GaN surface states to the native acceptor states in h-BN. We reinforced our findings by thorough structural characterization and demonstration of the h-BN/GaN Schottky diode. The surface barriers obtained from CER (0.60 ± 0.09 eV for GaN and 0.91 ± 0.12 eV for h-BN/GaN) and electrical measurements are consistent within the experimental accuracy, proving that CER is an excellent tool for interfacial studies of 2D/III-V hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA