Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223169

RESUMEN

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

2.
IEEE Trans Med Imaging ; 43(3): 1033-1044, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37856265

RESUMEN

Grating interferometry CT (GI-CT) is a promising technology that could play an important role in future breast cancer imaging. Thanks to its sensitivity to refraction and small-angle scattering, GI-CT could augment the diagnostic content of conventional absorption-based CT. However, reconstructing GI-CT tomographies is a complex task because of ill problem conditioning and high noise amplitudes. It has previously been shown that combining data-driven regularization with iterative reconstruction is promising for tackling challenging inverse problems in medical imaging. In this work, we present an algorithm that allows seamless combination of data-driven regularization with quasi-Newton solvers, which can better deal with ill-conditioned problems compared to gradient descent-based optimization algorithms. Contrary to most available algorithms, our method applies regularization in the gradient domain rather than in the image domain. This comes with a crucial advantage when applied in conjunction with quasi-Newton solvers: the Hessian is approximated solely based on denoised data. We apply the proposed method, which we call GradReg, to both conventional breast CT and GI-CT and show that both significantly benefit from our approach in terms of dose efficiency. Moreover, our results suggest that thanks to its sharper gradients that carry more high spatial-frequency content, GI-CT can benefit more from GradReg compared to conventional breast CT. Crucially, GradReg can be applied to any image reconstruction task which relies on gradient-based updates.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
3.
Sci Rep ; 13(1): 15274, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714939

RESUMEN

Neutron dark-field imaging is a powerful technique for investigating the microstructural properties of materials through high-resolution full-field mapping of small-angle scattering. However, conventional neutron dark-field imaging utilizing Talbot-Lau interferometers is limited to probing only one scattering direction at a time. Here, we introduce a novel multi-directional neutron dark-field imaging approach that utilizes a single absorption grating with a two-dimensional pattern to simultaneously probe multiple scattering directions. The method is demonstrated to successfully resolve fiber orientations in a carbon compound material as well as the complex morphology of the transformed martensitic phase in additively manufactured stainless steel dogbone samples after mechanical deformation. The latter results reveal a preferential alignment of transformed domains parallel to the load direction, which is verified by EBSD. The measured real-space correlation functions are in good agreement with those extracted from the EBSD map. Our results demonstrate that multi-directional neutron dark-field imaging is overcoming significant limitations of conventional neutron dark-field imaging in assessing complex heterogeneous anisotropic microstructures and providing quantitative structural information on multiple length scales.

4.
Opt Express ; 31(11): 18399-18406, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381551

RESUMEN

The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second.

5.
Magn Reson Med ; 90(5): 2144-2157, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345727

RESUMEN

PURPOSE: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts. METHODS: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( Δ $$ \Delta $$ ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at Δ = 0 $$ \Delta =0 $$ using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters. RESULTS: Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4 µ $$ \mu $$ m/18.0 µ $$ \mu $$ m versus 19.2 µ $$ \mu $$ m/19.0 µ $$ \mu $$ m; minor diameter-10.2 µ $$ \mu $$ m/9.4 µ $$ \mu $$ m versus 12.8 µ $$ \mu $$ m/13.4 µ $$ \mu $$ m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements. CONCLUSION: The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.


Asunto(s)
Estenosis de la Válvula Aórtica , Miocitos Cardíacos , Ratones , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Cardiomegalia/diagnóstico por imagen , Imagenología Tridimensional
6.
Light Sci Appl ; 12(1): 107, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142565

RESUMEN

Achromatic doublets are combinations of two individual lenses designed to focus different wavelengths of light in the same position. Apochromatic optics are improved versions of the achromatic schemes which extend the wavelength range significantly. Both achromatic and apochromatic optics are well-established for visible light. However, X-ray achromatic lenses did not exist until very recently, and X-ray apochromatic lenses have never been experimentally demonstrated. Here, we create an X-ray apochromatic lens system using an appropriate combination of a Fresnel zone plate and a diverging compound refractive lens with a tuned separation distance. The energy-dependent performance of this apochromat was characterized at photon energies between 6.5 and 13.0 keV by ptychographic reconstruction of the focal spot and scanning transmission X-ray microscopy of a resolution test sample. The apochromat delivered a reconstructed focal spot size of 940 × 740 nm2. The apochromatic combination shows a four-fold improvement in the chromatic aberration correction range compared to an achromatic doublet configuration. Thus, apochromatic X-ray optics have the potential to increase the focal spot intensity for a wide variety of X-ray applications.

7.
Opt Express ; 31(5): 9052-9071, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36860006

RESUMEN

X-ray grating interferometry CT (GI-CT) is an emerging imaging modality which provides three complementary contrasts that could increase the diagnostic content of clinical breast CT: absorption, phase, and dark-field. Yet, reconstructing the three image channels under clinically compatible conditions is challenging because of severe ill-conditioning of the tomographic reconstruction problem. In this work we propose to solve this problem with a novel reconstruction algorithm that assumes a fixed relation between the absorption and the phase-contrast channel to reconstruct a single image by automatically fusing the absorption and phase channels. The results on both simulations and real data show that, enabled by the proposed algorithm, GI-CT outperforms conventional CT at a clinical dose.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Medios de Contraste , Interferometría , Microscopía de Contraste de Fase
8.
PLoS One ; 17(8): e0273315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037163

RESUMEN

X-ray directional dark-field imaging is a recent technique that can reveal a sample's small-scale structural properties which are otherwise invisible in a conventional imaging system. In particular, directional dark-field can detect and quantify the orientation of anisotropic structures. Here, we present an algorithm that allows for the extraction of a directional dark-field signal from X-ray speckle-based imaging data. The experimental setup is simple, as it requires only the addition of a diffuser to a full-field microscope setup. Sandpaper is an appropriate diffuser material in the hard x-ray regime. We propose an approach to extract the mean scattering width, directionality, and orientation from the recorded speckle images acquired with the technique. We demonstrate that our method can detect and quantify the orientation of fibres inside a carbon fibre reinforced polymer (CFRP) sample within one degree of accuracy and show how the accuracy depends on the number of included measurements. We show that the reconstruction parameters can be tuned to increase or decrease accuracy at the expense of spatial resolution.


Asunto(s)
Algoritmos , Radiografía , Rayos X , Anisotropía , Radiografía/métodos
9.
Front Cell Dev Biol ; 10: 880696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756997

RESUMEN

Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.

10.
Nat Commun ; 13(1): 2923, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614048

RESUMEN

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.


Asunto(s)
Imagenología Tridimensional , Sincrotrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/ultraestructura , Imagen de Difusión por Resonancia Magnética , Ratones , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Microtomografía por Rayos X/métodos
11.
Nat Commun ; 13(1): 1305, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288546

RESUMEN

Diffractive and refractive optical elements have become an integral part of most high-resolution X-ray microscopes. However, they suffer from inherent chromatic aberration. This has to date restricted their use to narrow-bandwidth radiation, essentially limiting such high-resolution X-ray microscopes to high-brightness synchrotron sources. Similar to visible light optics, one way to tackle chromatic aberration is by combining a focusing and a defocusing optic with different dispersive powers. Here, we present the first successful experimental realisation of an X-ray achromat, consisting of a focusing diffractive Fresnel zone plate (FZP) and a defocusing refractive lens (RL). Using scanning transmission X-ray microscopy (STXM) and ptychography, we demonstrate sub-micrometre achromatic focusing over a wide energy range without any focal adjustment. This type of X-ray achromat will overcome previous limitations set by the chromatic aberration of diffractive and refractive optics and paves the way for new applications in spectroscopy and microscopy at broadband X-ray tube sources.

12.
IEEE Trans Med Imaging ; 40(12): 3775-3786, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34270420

RESUMEN

Biophysical models are a promising means for interpreting diffusion weighted magnetic resonance imaging (DW-MRI) data, as they can provide estimates of physiologically relevant parameters of microstructure including cell size, volume fraction, or dispersion. However, their application in cardiac microstructure mapping (CMM) has been limited. This study proposes seven new two-compartment models with combination of restricted cylinder models and a diffusion tensor to represent intra- and extracellular spaces, respectively. Three extended versions of the cylinder model are studied here: cylinder with elliptical cross section (ECS), cylinder with Gamma distributed radii (GDR), and cylinder with Bingham distributed axes (BDA). The proposed models were applied to data in two fixed mouse hearts, acquired with multiple diffusion times, q-shells and diffusion encoding directions. The cylinderGDR-pancake model provided the best performance in terms of root mean squared error (RMSE) reducing it by 25% compared to diffusion tensor imaging (DTI). The cylinderBDA-pancake model represented anatomical findings closest as it also allows for modelling dispersion. High-resolution 3D synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical models. A novel tensor-based registration method is proposed to align SRI structure tensors to the MR diffusion tensors. The consistency between SRI and DW-MRI parameters demonstrates the potential of compartment models in assessing physiologically relevant parameters.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Animales , Difusión , Ratones , Miocardio
13.
Sci Rep ; 9(1): 1325, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718557

RESUMEN

Tumor volume is a parameter used to evaluate the performance of new therapies in lung cancer research. Conventional methods that are used to estimate tumor size in mouse models fail to provide fast and reliable volumetric data for tumors grown non-subcutaneously. Here, we evaluated the use of iodine-staining combined with micro-computed tomography (micro-CT) to estimate the tumor volume of ex vivo tumor-burdened lungs. We obtained fast high spatial resolution three-dimensional information of the lungs, and we demonstrated that iodine-staining highlights tumors and unhealthy tissue. We processed iodine-stained lungs for histopathological analysis with routine hematoxylin and eosin (H&E) staining. We compared the traditional tumor burden estimation performed manually with H&E histological slices with a semi-automated method using micro-CT datasets. In mouse models that develop lung tumors with well precise boundaries, the method that we describe here enables to perform a quick estimation of tumorous tissue volume in micro-CT images. Our method overestimates the tumor burden in tumors surrounded by abnormal tissue, while traditional histopathological analysis underestimates tumor volume. We propose to embed micro-CT imaging to the traditional workflow of tumorous lung analyses in preclinical cancer research as a strategy to obtain a more accurate estimation of the total lung tumor burden.


Asunto(s)
Medios de Contraste/farmacología , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Carga Tumoral , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Microtomografía por Rayos X
14.
Opt Express ; 26(4): 4989-5004, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475342

RESUMEN

The current advances in new generation X-ray sources are calling for the development and improvement of high-performance optics. Techniques for high-sensitivity phase sensing and wavefront characterisation, preferably performed at-wavelength, are increasingly required for quality control, optimisation and development of such devices. We here show that the recently proposed unified modulated pattern analysis (UMPA) can be used for these purposes. We characterised two polymer X-ray refractive lenses and quantified the effect of beam damage and shape errors on their refractive properties. Measurements were performed with two different setups for UMPA and validated with conventional X-ray grating interferometry. Due to its adaptability to different setups, the ease of implementation and cost-effectiveness, we expect UMPA to find applications for high-throughput quantitative optics characterisation and wavefront sensing.

15.
Phys Rev Lett ; 118(20): 203903, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581800

RESUMEN

We present a method for x-ray phase-contrast imaging and metrology applications based on the sample-induced modulation and subsequent computational demodulation of a random or periodic reference interference pattern. The proposed unified modulated pattern analysis (UMPA) technique is a versatile approach and allows tuning of signal sensitivity, spatial resolution, and scan time. We characterize the method and demonstrate its potential for high-sensitivity, quantitative phase imaging, and metrology to overcome the limitations of existing methods.

16.
J Cardiovasc Magn Reson ; 19(1): 31, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28279178

RESUMEN

BACKGROUND: Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. METHODS: One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 µm and 3.6 µm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. RESULTS: Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HADTI-STSRI = -1.4° ± 23.2° and TADTI-STSRI = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. CONCLUSIONS: We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical applications.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Miocardio/citología , Sincrotrones , Animales , Simulación por Computador , Femenino , Interpretación de Imagen Asistida por Computador , Miocitos Cardíacos , Valor Predictivo de las Pruebas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
17.
Biomed Opt Express ; 8(2): 1257-1270, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28271016

RESUMEN

The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

18.
Opt Lett ; 41(23): 5490-5493, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906220

RESUMEN

Speckle-based x-ray phase-contrast imaging has drawn increasing interest in recent years as a simple, multimodal, cost-efficient, and laboratory-source adaptable method. We investigate its noise properties to help further optimization on the method and further comparison with other phase-contrast methods. An analytical model for assessing noise in a differential phase signal is adapted from studies on the digital image correlation technique in experimental mechanics and is supported by simulations and experiments. The model indicates that the noise of the differential phase signal from speckle-based imaging has a behavior similar to that of the grating-based method.

19.
Proc Natl Acad Sci U S A ; 112(41): 12569-73, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26424447

RESUMEN

Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.

20.
Opt Lett ; 40(12): 2822-5, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26076271

RESUMEN

The speckle-based scanning method for x-ray phase-contrast imaging is implemented with a liquid-metal-jet source. Using the two-dimensional scanning technique, the phase shift introduced by the object is retrieved in both transverse orientations, and the limitations on spatial resolution inherent to the speckle-tracking technique are avoided. This method opens up possibilities of new high-resolution multimodal applications for lab-based phase-contrast x-ray imaging.


Asunto(s)
Laboratorios , Imagen Óptica/métodos , Animales , Extremidad Inferior , Imagen Óptica/instrumentación , Fantasmas de Imagen , Arañas , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...