Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506203

RESUMEN

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Asunto(s)
Axones , Regeneración Nerviosa , Neuronas , Traumatismos de los Nervios Periféricos , Adulto , Humanos , Axones/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interneuronas/metabolismo , Regeneración Nerviosa/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo
2.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35556128

RESUMEN

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Asunto(s)
Axones , Regeneración Nerviosa , Regiones no Traducidas 3'/genética , Animales , Axones/metabolismo , Ratones , Regeneración Nerviosa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo
3.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674450

RESUMEN

The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.


Asunto(s)
Axones , Isoformas de ARN , Axones/metabolismo , Lipoilación , Regeneración Nerviosa , Isoformas de ARN/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
4.
Nat Rev Neurosci ; 22(2): 77-91, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288912

RESUMEN

Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.


Asunto(s)
Transporte Axonal , ARN Mensajero , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...