Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656110

RESUMEN

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

2.
Adv Mater ; 36(24): e2312778, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421936

RESUMEN

Hydrogenation of biomass-derived chemicals is of interest for the production of biofuels and valorized chemicals. Thermochemical processes for biomass reduction typically employ hydrogen as the reductant at elevated temperatures and pressures. Here, the authors investigate the direct electrified reduction of 5-hydroxymethylfurfural (HMF) to a precursor to bio-polymers, 2,5-bis(hydroxymethyl)furan (BHMF). Noting a limited current density in prior reports of this transformation, a hybrid catalyst consisting of ternary metal nanodendrites mixed with a cationic ionomer, the latter purposed to increase local pH and facilitate surface proton diffusion, is investigated. This approach, when implemented using Ga-doped Ag-Cu electrocatalysts designed for p-d orbital hybridization, steered selectivity to BHMF, achieving a faradaic efficiency (FE) of 58% at 100 mA cm-2 and a production rate of 1 mmol cm-2 h-1, the latter a doubling in rate compared to the best prior reports.

3.
Angew Chem Int Ed Engl ; 61(25): e202203511, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35383412

RESUMEN

Identification of different mitochondrial reactive oxygen species (ROS) simultaneously in living cells is vital for understanding the critical roles of different ROS in biological processes. To date, it remains a great challenge to develop ROS probes for direct and simultaneous identification of multiple ROS with high specificity. Herein, we report a SERS-borrowing-strategy-based nanoprobe (Au@Pt core-shell nanoparticles) for simultaneous and direct identification of different ROS by their distinct Raman fingerprints. Isotope substitution experiments and DFT calculations confirmed the ability of Au@Pt nanoprobe to capture and identify different mitochondrial ROS (i.e. ⋅OOH, H2 O2 , and ⋅OH). When functionalized with triphenylphosphine (TPP), the Au@Pt-TPP nanoprobe located to mitochondria and detected multiple ROS simultaneously in living cells under oxidative stimulation. Our method offers a new tool for the study of the functions of various ROS in biological processes.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro , Mitocondrias , Especies Reactivas de Oxígeno , Espectrometría Raman/métodos
4.
Anal Chem ; 94(11): 4779-4786, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35271253

RESUMEN

Directly monitoring the oxygen reduction reaction (ORR) process in situ is very important to deeply understand the reaction mechanism and is a critical guideline for the design of high-efficiency catalysts, but there is still lack of definite in situ evidence to clarify the effect between adsorbed intermediates and the strain/electronic effect for enhanced ORR performance. Herein, in situ surface-enhanced Raman spectroscopy (SERS) was employed to detect the intermediates during the ORR process on the Au@Pd@Pt core/shell heterogeneous nanoparticles (NPs). Direct spectroscopic evidence of the *OOH intermediate was obtained, and an obvious red shift of the *OOH frequency was identified with the controllable shell thickness of Pd. Detailed experimental characterizations and density functional theory (DFT) calculations demonstrated that such improved ORR activity after inducing Pd into Au@Pt NPs can be attributed to the optimized adsorbate-substrate interaction due to the strain and electronic effect, leading to a higher Pt-O binding energy and a lower O-O binding energy, which was conducive to O-O dissociation and promoted the subsequent reaction. Notably, this work illustrates a relationship between the performance and strain/electronic effect via the intermediate detected by SERS and paves the way for the construction of ORR electrocatalysts with high performance.

5.
Angew Chem Int Ed Engl ; 61(16): e202117834, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35068043

RESUMEN

Precise control and accurate understanding of the ordering degree of bimetallic nanocatalysts (BNs) are challenging yet crucial to acquire advanced materials for the oxygen reduction reaction (ORR). AuCu BNs with various ordering degrees were synthesized to evaluate the influence of ordering degree on the ORR at a molecular level using in situ Raman spectroscopy. The activity of AuCu BNs was improved by over 2 times after a disorder-to-order transition, making the performance of highly ordered AuCu BNs exceed that of benchmark Pt/C. Direct Raman spectroscopic evidence of key intermediate (*OH) demonstrates that the active site is the combination site of Au and Cu. Moreover, two distinct *OH species are observed on the ordered and disordered structure, and the ordered site is more beneficial for ORR due to its lower affinity to *OH. This work deepens the understanding on the important role of ordering degree on BNs and enables the design of improved catalysts.

6.
J Am Chem Soc ; 143(3): 1318-1322, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449677

RESUMEN

PtNi alloy catalysts have excellent catalytic activity and are considered some of the most promising electrocatalysts capable of replacing pure Pt for the oxygen reduction reaction (ORR). For PtNi alloys, Ni-doping can improve performance by changing the electronic and structural properties of the catalyst surface and its interaction with reaction intermediates. However, to date there is no direct spectral evidence detecting or identifying the effect of Ni on the ORR in PtNi alloy catalysts. Herein, we introduce a surface-enhanced Raman spectroscopic (SERS) "borrowing" strategy for investigating ORR processes catalyzed by Au@PtNi nanoparticles (NPs). The bond vibration of adsorbed peroxide intermediate species (*OOH) was obtained, and the effect of Ni on the interaction between surface Pt and *OOH was studied by varying the Ni content in the alloy. The frequency of the *OOH spectral band has an obvious red-shift with increasing Ni content. Combined with density functional theory (DFT) calculations, we show that Ni-doping can optimize *OOH surface binding on the Pt surface, achieving more efficient electron transfer, thus improving the ORR rate. Notably, these results evidence the SERS borrowing strategy as an effective technique for in situ observations of catalytic processes.

7.
Angew Chem Int Ed Engl ; 60(11): 5708-5711, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33325603

RESUMEN

Elucidating hydrogen oxidation reaction (HOR) mechanisms in alkaline conditions is vital for understanding and improving the efficiency of anion-exchange-membrane fuel cells. However, uncertainty remains around the alkaline HOR mechanism owing to a lack of direct in situ evidence of intermediates. In this study, in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and DFT were used to study HOR processes on PtNi alloy and Pt surfaces, respectively. Spectroscopic evidence indicates that adsorbed hydroxy species (OHad ) were directly involved in HOR processes in alkaline conditions on the PtNi alloy surface. However, OHad species were not observed on the Pt surface during the HOR. We show that Ni doping promoted hydroxy adsorption on the platinum-alloy catalytic surface, improving the HOR activity. DFT calculations also suggest that the free energy was decreased by hydroxy adsorption. Consequently, tuning OH adsorption by designing bifunctional catalysts is an efficient method for promoting HOR activity.

8.
ACS Appl Mater Interfaces ; 12(35): 39902-39909, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805898

RESUMEN

We demonstrate that copper-based super-thin high-efficiency boiling heat transfer (BHT) interfaces can be obtained via electroplating hierarchical nickel nanocone coverings on the surface of copper nanocone cores. By regulating surface morphologies, wettability, and mass and heat transfer properties of hierarchical structures, we reveal the regulation rules of their performance. Based on this, we obtain the optimized BHT interfaces with a thickness of only 6.4 µm, which shows 228% enhancement in the maximal heat transfer coefficient, 71% enhancement in the critical heat flux, and 68% decrease in the superheat for the onset of nucleate boiling, as compared to the flat copper surface. Our studies clearly indicate that, although the in situ growth of nickel nanocones can unavoidably increase the interface thermal resistance of hierarchical structures, its optimization can still enhance BHT performance. This may be ascribed to the coupling of several interface effects such as more heat transfer area, more nucleation sites, smaller bubble departure sizes, and stronger liquid supply ability caused by hierarchical structures. Our work opens up a new avenue for the development of copper-based super-thin high-efficiency BHT interfaces, which would help enhance the efficiency of energy utilization and heat dissipation of various thermal devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...