Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 5(12): e1000619, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041200

RESUMEN

Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/fisiología , Modelos Biológicos , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Hipoxia de la Célula/fisiología , Simulación por Computador , Humanos
2.
J Biol Chem ; 283(43): 29292-300, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18687689

RESUMEN

Reactive oxygen species (ROS) generation in mitochondria as a side product of electron and proton transport through the inner membrane is important for normal cell operation as well as development of pathology. Matrix and cytosol alkalization stabilizes semiquinone radical, a potential superoxide producer, and we hypothesized that proton deficiency under the excess of electron donors enhances reactive oxygen species generation. We tested this hypothesis by measuring pH dependence of reactive oxygen species released by mitochondria. The experiments were performed in the media with pH varying from 6 to 8 in the presence of complex II substrate succinate or under more physiological conditions with complex I substrates glutamate and malate. Matrix pH was manipulated by inorganic phosphate, nigericine, and low concentrations of uncoupler or valinomycin. We found that high pH strongly increased the rate of free radical generation in all of the conditions studied, even when DeltapH=0 in the presence of nigericin. In the absence of inorganic phosphate, when the matrix was the most alkaline, pH shift in the medium above 7 induced permeability transition accompanied by the decrease of ROS production. ROS production increase induced by the alkalization of medium was observed with intact respiring mitochondria as well as in the presence of complex I inhibitor rotenone, which enhanced reactive oxygen species release. The phenomena revealed in this report are important for understanding mechanisms governing mitochondrial production of reactive oxygen species, in particular that related with uncoupling proteins.


Asunto(s)
Mitocondrias/metabolismo , Especies Reactivas de Oxígeno , Animales , Encéfalo/metabolismo , Ácido Glutámico/química , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Malatos/química , Potenciales de la Membrana , Modelos Biológicos , Modelos Químicos , Ratas , Rotenona/farmacología , Espectrometría de Fluorescencia/métodos , Valinomicina/farmacología
3.
J Neurochem ; 106(5): 2184-93, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18624907

RESUMEN

Liberation of zinc from intracellular stores contributes to oxidant-induced neuronal injury. However, little is known regarding how endogenous oxidant systems regulate intracellular free zinc ([Zn(2+)](i)). Here we simultaneously imaged [Ca(2+)](i) and [Zn(2+)](i) to study acute [Zn(2+)](i) changes in cultured rat forebrain neurons after glutamate receptor activation. Neurons were loaded with fura-2FF and FluoZin-3 to follow [Ca(2+)](i) and [Zn(2+)](i), respectively. Neurons treated with glutamate (100 microM) for 10 min gave large Ca(2+) responses that did not recover after termination of the glutamate stimulus. Glutamate also increased [Zn(2+)](i), however glutamate-induced [Zn(2+)](i) changes were completely dependent on Ca(2+) entry, appeared to arise entirely from internal stores, and were substantially reduced by co-application of the membrane-permeant chelator TPEN during the glutamate treatment. Pharmacological maneuvers revealed that a number of endogenous oxidant producing systems, including nitric oxide synthase, phospholipase A(2), and mitochondria all contributed to glutamate-induced [Zn(2+)](i) changes. We found no evidence that mitochondria buffered [Zn(2+)](i) during acute glutamate receptor activation. We conclude that glutamate-induced [Zn(2+)](i) transients are caused in part by [Ca(2+)](i)-induced reactive oxygen species that arises from both cytosolic and mitochondrial sources.


Asunto(s)
Señalización del Calcio/fisiología , Ácido Glutámico/metabolismo , Degeneración Nerviosa/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Quelantes/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Colorantes Fluorescentes , Fura-2 , Ácido Glutámico/farmacología , Líquido Intracelular/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidantes/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Compuestos Policíclicos , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...