Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2336724, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38600704

RESUMEN

Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.


Asunto(s)
Humo , Solanum tuberosum , Animales , Solanum tuberosum/metabolismo , Biocombustibles , Fotosíntesis , Metilación
2.
J Plant Res ; 137(1): 111-124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37610631

RESUMEN

The cyclic nucleotide cyclic guanosine monophosphate (cGMP) is a powerful cell signaling molecule involved in biotic and abiotic stress perception and signal transduction. In the model plant Arabidopsis thaliana, salt and osmotic stress rapidly induce increase in cGMP which plays role by modulating the activity of monovalent cation transporters, possibly by direct binding to these proteins and by altering the expression of many abiotic stress responsive genes. In a recent study, a membrane permeable analogue of cGMP (8-bromo-cGMP) was found to have a promotive effect on soluble sugar, flavonoids and lignin content, and membrane integrity in Solanum lycopersicum seedlings under salt stress. However, it remains to be elucidated how salt stress affects the endogenous cGMP level in S. lycopersicum and if Br-cGMP-induced improvement in salt tolerance in S. lycopersicum involves altered cation fluxes. The current study was conducted to answer these questions. A rapid increase (within 30 s) in endogenous cGMP level was determined in S. lycopersicum roots after treatment with 100 mM NaCl. Addition of membrane permeable Br-cGMP in growth medium remarkably ameliorated the inhibitory effects of NaCl on seedlings' growth parameters, chlorophyll content and net photosynthesis rate. In salt stressed plants, Br-cGMP significantly decreased Na+ content by reducing its influx and increasing efflux while it improved plants K+ content by reducing its efflux and enhancing influx. Furthermore, supplementation with Br-cGMP improved plant's proline content and total antioxidant capacity, resulting in markedly decreased electrolyte leakage under salt stress. Br-cGMP increased the expression of Na+/H+ antiporter genes in roots and shoots of S. lycopersicum growing under salt stress, potentially enhancing plant's ability to sequester Na+ into the vacuole. The findings of this study provide insights into the mechanism of cGMP-induced salt stress tolerance in S. lycopersicum.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacología , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Plantones
4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37895875

RESUMEN

The effectiveness of all antibiotics in the ß-lactam group to cure bacterial infections has been impaired by the introduction of the New Delhi Metallo-ß-lactamase (NDM-1) enzyme. Attempts have been made to discover a potent chemical as an inhibitor to this enzyme in order to restore the efficacy of antibiotics. However, it has been a challenging task to develop broad-spectrum inhibitors of metallo-ß-lactamases. Lack of sequence homology across metallo-ß-lactamases (MBLs), the rapidly evolving active site of the enzyme, and structural similarities between human enzymes and metallo-ß-lactamases, are the primary causes for the difficulty in the development of these inhibitors. Therefore, it is imperative to concentrate on the discovery of an effective NDM-1 inhibitor. This study used various in silico approaches, including molecular docking and molecular dynamics simulations, to investigate the potential of phytochemicals to inhibit the NDM-1 enzyme. For this purpose, a library of about 59,000 phytochemicals was created from the literature and other databases, including FoodB, IMPPAT, and Phenol-Explorer. A physiochemical and pharmacokinetics analysis was performed to determine possible toxicity and mutagenicity of the ligands. Following the virtual screening, phytochemicals were assessed for their binding with NDM-1using docking scores, RMSD values, and other critical parameters. The docking score was determined by selecting the best conformation of the protein-ligand complex. Three phytochemicals, i.e., butein (polyphenol), monodemethylcurcumin (polyphenol), and rosmarinic acid (polyphenol) were identified as result of pharmacokinetics and molecular docking studies. Furthermore, molecular dynamics simulations were performed to determine structural stabilities of the protein-ligand complexes. Monodemethylcurcumin, butein, and rosmarinic acid were identified as potential inhibitors of NDM-1 based on their low RMSD, RMSF, hydrogen bond count, average Coulomb-Schrödinger interaction energy, and Lennard-Jones-Schrödinger interaction energy. The present investigation suggested that these phytochemicals might be promising candidates for future NDM-1 medication development to respond to antibiotic resistance.

5.
An Acad Bras Cienc ; 95(3): e20230014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878911

RESUMEN

Microbial proteases are one of the most demanding enzymes for various industries with diverse applications in food, pharmaceutics, and textile industries to name the few. An extracellular alkaline metalloprotease was produced and purified from moderate halophilic bacterial strain, Bacillus cereus TS2, with some unique characteristics required for various industrial applications. The protease was produced in basal medium supplemented with casein and was partially purified by ion exchange chromatography followed by ammonium sulphate precipitation. The alkaline metalloprotease has molecular weight of 35 kDa with specific activity of 535.4 µM/min/mg. It can work at wide range of pH from 3 to 12, while showing optimum activity at pH 10. Similarly, the alkaline metalloprotease is stable till the temperature of 80 °C and works at wide range of temperature from 20 to 90 °C with optimum activity at 60 °C. The turnover rate increases in the presence of NaCl and Co+2 with k cat/KM of 1.42 × 103 and 1.27 × 103 s-1.M-1 respectively, while without NaCl and Co+2 it has a value of 7.58× 102. The alkaline metalloprotease was relatively resistant to thermal and solvent mediated denaturation. Applications revealed that the metalloprotease was efficient to remove hair from goat skin, remove blood stains and degrade milk, thus can be a potential candidate for leather, detergent, and food industry.


Asunto(s)
Bacillus cereus , Cloruro de Sodio , Cloruro de Sodio/farmacología , Metaloproteasas/química , Péptido Hidrolasas , Temperatura , Concentración de Iones de Hidrógeno
6.
Environ Sci Pollut Res Int ; 30(60): 124992-125005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37498427

RESUMEN

Graphene quantum dots (GQDs), a new solid-state electron transfer material was anchored to nitrogen-doped TiO2 via sol gel method. The introduction of GQDs effectively extended light absorption of TiO2 from UV to visible region. GQD-N-TiO2 demonstrated lower PL intensity at excitation wavelengths of 320 to 450 nm confirming enhanced exciton lifespan. GQD-N-TiO2-300 revealed higher surface area (191.91m2 g-1), pore diameter (1.94 nm), TEM particle size distribution (4.88 ± 1.26 nm) with lattice spacing of 0.45 nm and bandgap (2.91 eV). In addition, GQDs incorporation shifted XPS spectrum of Ti 2p to lower binding energy level (458.36 eV), while substitution of oxygen sites in TiO2 lattice by carbon were confirmed through deconvolution of C 1 s spectrum. Photocatalytic reaction followed the pseudo first order reaction and continuous reductions in apparent rate constant (Kapp) with incremental increase in RB5 concentration. Langmuir-Hinshelwood model showed surface reaction rate constants KC = 1.95 mg L-1 min-1 and KLH = 0.76 L mg-1. The active species trapping, and mechanism studies indicated the photocatalytic decolorization of RB5 through GQD-N-TiO2 was governed by type II heterojunction. Overall, the photodecolorization reactions were triggered by the formation of holes and reactive oxygen species. The presence of •OH, 1O2, and O2• during the photocatalytic process were confirmed through EPR analysis. The excellent photocatalytic decolorization of the synthesized nanocomposite against RB5 can be ascribed to the presence of GQDs in the TiO2 lattice that acted as excellent electron transporter and photosensitizer. This study provides a basis for using nonmetal, abundant, and benign materials like graphene quantum dots to enhance the TiO2 photocatalytic efficiency, opening new possibilities for environmental applications.


Asunto(s)
Grafito , Puntos Cuánticos , Luz , Nitrógeno
7.
Physiol Plant ; 174(5): e13758, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36281843

RESUMEN

This study adopts a very effective high-performance liquid chromatography (HPLC) technique for the quantitative determination of rosmarinic acid (RA) and PCR-based amplification of biosynthetic key regulators in Isodon rugosus, Daphne mucronata, and Viburnum grandiflorum from the lower Himalayan regions. Rosmarinic acid is engaged in a variety of biological processes and has significant industrial significance. In this study, it was identified from crude methanolic extract using thin-layer chromatography with a standard, and its content was quantified using HPLC without interrupting spikes using a mixture of methanol and deionized water containing acetonitrile (70:30 v/v) and acetic acid (0.1% v/v) at UV 310 nm absorption. We used RT-PCR to identify cDNAs encoding PAL, C4H, and RAS, and Image J's semi-quantitative analysis to quantify the expression levels of genes involved in RA production from chosen plant material. The highest levels of PAL, C4H, and RAS were detected, by band intensity, in the leaves and flowers of I. rugosus, which also exhibited a substantial quantity of RA. However, in V. grandiflorum and D. mucronata the transcript of the given genes was low. The concentration of RA ranged from 187.7 to 21.2 mg g-1 for I. rugosus, 17.42 to 5.42 mg g-1 for V. grandiflorum, and 15.19 mg g-1 for D. mucronata. This study demonstrated that the method for quantifying RA from a crude methanolic extract was effective, indicating that I. rugosus might be used as an indigenous alternative source of RA.


Asunto(s)
Metanol , Fenilalanina , Cinamatos , Extractos Vegetales/química , Acetatos , Acetonitrilos , Agua , Cromatografía Líquida de Alta Presión , Ácido Rosmarínico
8.
PLoS One ; 17(5): e0267788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35536837

RESUMEN

Microalgal biomass provides a renewable source of biofuels and other green products. However, in order to realize economically viable microalgal biorefinery, strategic identification and utilization of suitable microalgal feedstock is fundamental. Here, a multi-step suboptimal screening strategy was used to target promising microalgae strains from selected freshwaters of the study area. The resulting strains were found to be affiliated to seven closely-related genera of the family Scenedesmaceae, as revealed by both morphologic and molecular characterization. Following initial screening under upper psychrophilic to optimum mesophilic (irregular temperature of 14.1 to 35.9°C) cultivation conditions, superior strains were chosen for further studies. Further cultivation of the selected strains under moderate to extreme mesophilic cultivation conditions (irregular temperature of 25.7 to 42.2°C), yielded up to 74.12 mgL-1day-1, 19.96 mgL-1day-1, 48.56%, 3.34 µg/mL and 1.20 µg/mL, for biomass productivity, lipid productivity, carbohydrate content, pigments content and carotenoids content respectively. These performances were deemed promising compared with some previous, optimum conditions-based reports. Interestingly, the fatty acids profile and the high carotenoids content of the studied strains revealed possible tolerance to the stress caused by the changing suboptimal cultivation conditions. Overall, strains AY1, CM6, LY2 and KL10 were exceptional and may present sustainable, promising feedstock for utilization in large-scale generation of green products, including biodiesel, bioethanol, pigments and dietary supplements. The findings of this study, which exposed promising, eurythermal strains, would expand the current knowledge on the search for promising microalgae strains capable of performing under the largely uncontrolled large-scale cultivation settings.


Asunto(s)
Chlorophyceae , Microalgas , Biocombustibles , Biomasa , Carotenoides
9.
PeerJ ; 9: e11860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434649

RESUMEN

BACKGROUND: Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. METHODS: Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. RESULTS: The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. CONCLUSION: This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.

10.
Microsc Res Tech ; 84(12): 3161-3170, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34288234

RESUMEN

Soot particles emitted from the burning of solid fuel sources in the households carry important environmental and public health implications. In this study, the indoor soot particles released from firewood, cow dung, and bagasse burning at households of selected rural areas of Khyber Pakhtunkhwa province of Pakistan were investigated by characterization analyses to study its morphological and elemental compositions. Results demonstrated diverse compositions of soot particles from each fuel source. The surface areas of soot particles emitted by the firewood, cow dung, and bagasse were about 0.3, 0.4, and 8.64 m2  g-1 , respectively. For the soot particles emitted by the firewood burning, the major functional groups for aromatic compounds were C═C at the 1,431-1,599 at 1,000-2,000 cm-1 . The absorbance rate of alkanes was about 1,599-1,431 at 1,000-2,000 cm-1 . However, silicon band vibration was more prominent in bagasse soot particles as compared to other samples. The emission of soot particles with high surface area in the atmosphere could provide an elevated adsorption sites for atmospheric pollution and trap more energy resulting in increased atmospheric temperature. Findings from the present study suggest that current households' fuel combustion practices significantly contribute to increase the particulate matter in the atmosphere and possible enhance climate change phenomenon and related disasters in northern Pakistan.


Asunto(s)
Material Particulado , Hollín , Pakistán , Material Particulado/análisis , Hollín/análisis
11.
PLoS One ; 15(8): e0233325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32756562

RESUMEN

Antibiotics discovery was a significant breakthrough in the field of therapeutic medicines, but the over (mis)use of such antibiotics (in parallel) caused the increasing number of resistant bacterial species at an ever-higher rate. This study was thus devised to assess the multi-drug resistant bacteria present in sanitation-related facilities in human workplaces. In this regard, samples were collected from different gender, location, and source-based facilities, and subsequent antibiotic sensitivity testing was performed on isolated bacterial strains. Four classes of the most commonly used antibiotics i.e., ß-lactam, Aminoglycosides, Macrolides, and Sulphonamides, were evaluated against the isolated bacteria. The antibiotic resistance profile of different (70) bacterial strains showed that the antibiotic resistance-based clusters also followed the grouping based on their isolation sources, mainly the gender. Twenty-three bacterial strains were further selected for their 16s rRNA gene based molecular identification and for phylogenetic analysis to evaluate the taxonomic evolution of antibiotic resistant bacteria (ARB). Moreover, the bacterial resistance to Sulphonamides and beta lactam was observed to be the most and to Aminoglycosides and macrolides as the least. Plasmid curing was also performed for multidrug resistant (MDR) bacterial strains, which significantly abolished the resistance potential of bacterial strains for different antibiotics. These curing results suggested that the antibiotic resistance determinants in these purified bacterial strains are present on respective plasmids. Altogether, the data suggested that the human workplaces are the hotspot for the prevalence of MDR bacteria and thus may serve as the source of horizontal gene transfer and further transmission to other environments.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple , Cuartos de Baño , Lugar de Trabajo , Bacterias/genética , Farmacorresistencia Bacteriana Múltiple/genética , Microbiología Ambiental , Femenino , Humanos , Higiene , Masculino , Exposición Profesional , Pakistán , Filogenia , Plásmidos , Prevalencia , Factores R , ARN Ribosómico 16S/genética , Saneamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...